A NEW KAURANE DITERPENE FROM THE LEAVES OF CALLICARPA MACROPHYLLA VAHL.

Vinay Kumar Verma, N.U. Siddiqui* and Mohd. Aslam
Natural Product Research Division, Post graduate Department of Chemistry, G.F. (P.G.) College (M.I.P. Rohilkhand University, Bareilly) Shahjahanpur,U.P., India

Article Received on: 10/03/12 Revised on: 25/04/12 Approved for publication: 06/05/12

*Email: nusiddiqui86@gmail.com

ABSTRACT
The chloroform extract of leaves of Callicarpa macrophylla Vahl., yielded a new compound 16a-hydroxy- 17-isopropylidino-3-oxo-phyllocladane along with calliterpenone and its monoacetate.

Keywords: Callicarpa macrophylla, Verbenaceae, chloroform extract, 16a-hydroxy- 17-isopropylidino-3-oxophyllocladane.

INTRODUCTION
Plant Callicarpa macrophylla Vahl. (Family: Verbenaceae) is an important less known medicinal plant of the lower warm valleys of the Himalaya and is commonly known as Priyangoo or Daya. It is a perennial, deciduous shrub attaining 2.5m in height. Essential oil obtained from different parts of Priyangoo through steam distillation, while no essential oil content was observed in the roots1–4. All The parts are important and are used to cure many diseases. The bark is used to heal cut and wounds. Seeds and roots are used for digestion and leaves are used in rheumatism. The fruits are used for blisters and boils. Various extracts of this plant have shown anti-inflammatory, antifungal, antimicrobial and antibacterial activities5–9.

In continuation to our previous work10–11, here we report a new compound isolated from the plant. The compound was characterized as 16a-hydroxy- 17-isopropylidino-3-oxophyllocladane.

MATERIAL AND METHODS
The fresh leaves of Callicarpa macrophylla Vahl. (Family: Verbenaceae) were procured from the Central Institute of Medicinal and Aromatic Plants (CIMAP) Lucknow (U.P.) in October 2009. The plant was identified by a Taxonomist of the center and a specimen was kept for record.

The air dried plant material was coarsely powered (1.5 kg) and then sequential extracted with petroleum ether (60–80°C), chloroform and methanol by the soxhlet apparatus (5 times x 1 L. each). The fractions of each extract were mixed together and the excess of solvent was evaporated under reduced pressure. Out of these extracts only chloroform extract was considered for further examination. The semisolid brownish mass (3 gm) obtained from chloroform extract was dissolved in small amount of chloroform and was mixed with 3 gm of silica gel. The slurry was loaded on a column of silica gel (60 gm) and eluted with petroleum ether, benzene, chloroform, ethyl acetate, methanol and their mixtures of different proportions of increasing polarity. Several fractions were obtained which were monitored by TLC and the fraction showing single spot on TLC were combined together.

The compound was obtained as crystalline solid by eluting with benzene – chloroform (2:8), m.p., 162–164°C and was characterized as 16a-hydroxy- 17-isopropylidino-3-oxophyllocladane by comparing spectral data. 1H NMR (CDCl3) δ 4.01 & δ 3.98 (2H, d, oxymethylene protons H-17), δ 3.19 (1H, oxymethine proton), δ 0.99 – δ 1.31 (15H, 5x-CH3); 13C NMR (CDCl3) δ 32.0 (C-1), δ 33.6 (C-2), δ 213.0 (C-3), δ 50.1 (C-4), δ 48.8 (C-5), δ 21.9 (C-6), δ 32.0 (C-7), δ 31.8 (C-8), δ 49.4 (C-9), δ 29.4 (C-10), δ 20.6 (C-11), δ 22.8 (C-12), δ 39.8 (C-13), δ 32.5 (C-14), δ 41.2 (C-15), δ 74.9 (C-16), δ 76.5 (C-17), δ 69.0 (C-18), δ 18.9 (C-19), δ 20.1 (C-20), δ 20.9 (C-21), δ 23.6 (C-22), δ 24.1 (C-23).

RESULT AND DISCUSSION
The compound was obtained as crystalline solid by eluting with benzene – chloroform (2:8). The I.R. spectrum of the compound showed the presence of hydroxyl group (3400 cm–1) as well as carbonyl group (1700 cm–1). The mass spectrum of the compound indicated the molecular ion peak at m/z=362 corresponding to molecular formula C23H33O3 suggesting the existence of the five double bond equivalence. The disappearance of olefinic signals in 1H and 13C NMR spectra and appearance of resonances of number of rings and large number of methyl groups, the compound was suggested to be a saturated tetracyclic diterpene having kaurane skeleton of phyllocladane type. The 1H NMR spectrum of the compound exhibited a pair of doublets at δ 3.98 and δ 4.01 reasonably assignable to an oxymethylene protons. The signal at δ 3.19 was due to oxiymethine proton. The signal for five methyl groups resonates between δ 0.99 – δ 1.31. The structure was further justified by 13C NMR spectral studies which showed twenty three carbon signals out of which five are for methyl nine for methylene, four for methine and five for unprotonated carbon atoms. A down field signal appeared in 13C NMR spectrum at δ 213.0 was assignable to carbonyl carbon C-3. The other downfield signals found at δ 76.5 was for an oxymethylene C-17, at δ 74.9 was due to oxysubstituted non protonic carbon C-16 and at δ 69.0 was due to isopropylidino carbon. The signal for gem-dimethyl group appeared at δ 23.6. The rest of signal have resemblance with those of calliterpenone and resonates between δ 18.9 – δ 50.1.

On the basis of these observations the structure of the compound was assigned as 16a-hydroxy- 17-isopropylidino-3-oxo-phyllocladane. This is the first report of the compound from this plant.
N.U. Siddiqui et al. IRJP 2012, 3 (5)

Page 179

ACKNOWLEDGEMENT
The authors are thankful to the Principal, G.F. College and 
Head, Department of Chemistry for providing facilities for 
carrying out this work.

REFERENCES
New Delhi: 1956.
2. Gupta PS, Sen M & Pal BC. Chemical Constituents of the leaves of 
Callicarpa macrophylla Vahl. Journal of Indian Chemical Society 1976; 
3. Singh AK, Bhattachaary AK, Prasad G, SharmaVD & Gupta K C. The 
essential oil of Callicarpa macrophylla Vahl. and its anti microbial activity. 
4. Sharma AK, Negi KS, Bhandari DC, Shukla HY & Pareek SK. Influence 
of NPK and Spacings on the Growth and yielded of herbage of Callicarpa 
macrophylla Vahl. Priyang: A Less known Medicinal plants, ENVIS 
5. Ahmad SA & Zaman A. Diterpenoid Constituents of Callicarpa 
plants of India, CSIR, New Delhi: 1986.
8. Jones WP & Kinghorn D. Biological active natural products of the Genus 
Determination of novel plant growth promoting diterpenes in Callicarpa 
macrophylla by HPLC and HPTLC. Journal of Liquid Chromatography 2009; 
32: 2437-2450.
10. Verma VK, Siddiqui NU & Aslam M. A bioactive terpenoid from the 
leaves of Callicarpa macrophylla Vahl. Biosciences Biotechnology Research 
11. Verma VK, Siddiqui NU & Aslam M. Isolation of 3β,16α,17-
trihydroxyphylocladane from the leaves of Callicarpa macrophylla Vahl., 
Natural Proda Medica;June2011:1-3.

Source of support: Nil, Conflict of interest: None Declared