INTRODUCTION
Candesartan Cilexetil is an esterified prodrug of Candesartan, a non-peptide angiotensin II type 1 (AT1) receptor antagonist used in the treatment of hypertension and congestive heart failure. Candesartan meets the requirement of high potency but it is poorly absorbed when administered orally. Therefore, the prodrug Candesartan Cilexetil is developed. It is soluble in methylene chloride, half life is 5.1 to 10.5hrs and bioavailability is 15%. It is marketed as conventional tablets. In this work, it is formulated as immediate release tablets by changing the concentration of ingredients. For many drug substances, conventional immediate-release formulations provide clinically effective therapy while maintaining the required balance of pharmacokinetic and pharmacodynamic profiles with in acceptable level of safety to the patient. The immediate release formulation of Candesartan Cilexetil is prepared by wet granulation method to provide rapid onset of action. In order to optimize the best formulation, ten different trials are developed. The main ingredients used in the formulation are lactose monohydrate, PEG, calcium CMC and MCC. Weight variation, thickness, friability, disintegration time, in-vitro release, pharmaceutical assay are studied as response variables. The formulation containing 38% of MCC is selected as an optimized product in which the different physical properties and in-vitro release profile showed best comparable results with innovator product.

Primary Objective:
1. To formulate and evaluate immediate release Candesartan Cilexetil tablets (32mg)

Secondary Objectives:
1. To perform preformulation studies including drug – excipient compatibility study.
2. To develop various formulations with different excipients.
3. To study the effect of excipient concentrations on the tablet characteristics.
4. To establish the invitro release compliance with the established criteria.
5. To achieve immediate release profile for the developed formulation.
6. To establish the stable of the formulation.
7. To improve the therapeutic response.

MATERIALS AND METHODS
Candesartan Cilexetil is gift sample from aurobindingo pharmaceuticals, Hyderabad. Lactose, pregelatinized starch, polyethylene glycol, calcium CMC, spray dried lactose, magnesium corn starch, ferric oxide from SD fine chemicals Mumbai.

Pre formulation

Preformulation may be described as a stage of development during which the physicochemical and biopharmaceutical properties of a drug substance are characterized. It is an important part of the drug development process. A wide variety of information must be generated to develop formulations rationally. Characterization of the drug is a very important step at the preformulation phase of product development followed by studying the properties of the excipients and their compatibility.

Objective
The objective is to generate information useful in developing stable and bioavailable dosage form.

Scope
The use of preformulations parameters maximizes the chances in formulating an acceptable, safe, efficacious and stable product and at the same time provides the basis for optimizing of the drug product quality.

The API is tested for the following properties
- Organoleptic Properties
- Solubility
- Water Content
- Particle Size determination
- Flow Properties
 - Angle of Repose
 - Bulk Density
 - Tapped Density
 - Carr’s Index
 - Hausner’s Ratio
- Drug – Excipient compatibility study

Organoleptic Properties
The drug sample is viewed visually and viewed under the compound microscope for the determination of its color using the black and white backgrounds and nature of the drug sample. Then the results are compared with the official standards.

Solubility
The solubility of the drug sample is carried out in different solvents (aqueous and organic) according to the United States Pharmacopoeia. The results are then compared with standards.
Water Content
35 to 40ml of a mixture of methanol is transferred to the titration vessel and titrate with Karl fisher reagent to the electrometric end point to consume any moisture that may be present. Use powder from 5 tablets, grind to a fine powder in an atmosphere of temperature and relative humidity known not to influence the results. Accurately weigh and transfer about 300-500mg of the powder in to the titration vessel, mix and titrate with the KF reagent to the electrometric endpoint. Calculate the water content of the specimen in mg taken by the formulae:

\[
\text{Water content} = \frac{S \times F \times 100}{W}
\]

Where,
- \(S \) = Volume in ml of reagent consumed in the second titration
- \(F \) = Water equivalent factor of KF reagent
- \(W \) = Weight of sample taken in mg

Particle size determination
Size, shape & surface morphology of drug particles affects the flow, formulation homogeneity, dissolution & chemical reactivity of drugs. Particle size of drugs may affect formulation and product efficacy. Certain physical and chemical properties of drug substances are affected by the particle size distribution including:
- Dissolution rate
- Bioavailability
- Content uniformity
- Taste, texture and color
- Stability, flow characteristics and sedimentation rates.

Particle size analysis is carried out in “Malvern Particle Size Analyzer” Model-Mastersizer-2000.

General Principle
The principle of operation consists of measuring the size of particles (powders, suspensions and emulsions) using the diffraction and diffusion of a laser beam. These particles scatter light at an angle that is inversely proportional to their size. The angular intensity of the scattered light is then measured by a series of photosensitive detectors. The map of scattering intensity versus angle is the primary source of information used to calculate the particle size.

SCHEMATIC REPRESENTATION OF THE LASER DIFFRACTION MEASUREMENT

Flow Properties
Angle of repose (θ)
It is a direct measure of flow property of powders. It is the maximum angle that can be obtained between the free standing surface of a powder heap and the horizontal.

Procedure
Angle of repose is determined using funnel to pour the powder on the surface from a fixed height of 2cm. Circumference is drawn with a pencil on the graph paper and the radius of base of a pile is measured at 5 different points and average is taken for calculation Angle of repose using following formula:

\[
\text{Angle of Repose (θ)} = \tan^{-1}\left(\frac{h}{r}\right)
\]

Where,
- \(h \) = height of a pile (2 cm)
- \(r \) = radius of pile base.

ACCEPTANCE CRITERIA FOR ANGLE OF REPOSE

<table>
<thead>
<tr>
<th>Range (°)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 – 30</td>
<td>Excellent</td>
</tr>
<tr>
<td>31 – 35</td>
<td>Good</td>
</tr>
<tr>
<td>36 – 40</td>
<td>Fair</td>
</tr>
<tr>
<td>41 – 45</td>
<td>Passable</td>
</tr>
<tr>
<td>46 – 55</td>
<td>Poor</td>
</tr>
<tr>
<td>56 – 65</td>
<td>Very Poor</td>
</tr>
<tr>
<td>> 66</td>
<td>Very Very Poor</td>
</tr>
</tbody>
</table>

Acceptable range for angle of repose is 20°to 40°

Bulk density
It is the ratio of given mass of powder and its bulk volume determined by measuring the volume of known mass of powder sample that has been passed through the screen in to graduating cylinder.

Procedure
Bulk density is determined according to USP method I. The powder sample under test is screened through sieve no 18 and 10 mg of pure drug is accurately weighed and filled in a 100ml graduated cylinder and the powder is leveled and the unsettled volume (Vo) is noted. Bulk density (Db) is calculated in g/ml by the formula:

\[
\text{Db} = \frac{M}{V_o}
\]

Where,
- \(M \) = mass of powder taken
- \(V_o \) = unsettled apparent volume

Limits:
It has been stated that the bulk density values having less than 1.2 g/ml indicates good packing and values greater than 1.5 g/ml indicates poor packing.

Tapped density
Procedure
Tapped density is determined by USP method II. The powder sample under test is screened through sieve no.18 and 10 mg of pure drug is filled in 100ml graduated cylinder of tap density tester (electrolab, ETD 1020). The mechanical tapping of the cylinder is carried out using tapped density tester at a normal rate of 250 drops per minute for 500 times initially and the initial tapped volume (Vt) is noted. Tapping is proceeded further for additional 750 times and volume is noted. The difference between two tapping volumes is calculated.

Tapping is continued for additional 1250 tap if the difference is more than 2%. This is continued in increments of 1250 taps until differences between volumes of subsequent tapping is less than 2%. This volume is noted as, the final tapped volume (Vf) is noted and average is taken for calculation Tapped density using following formula:

\[
\text{Tapped Density} = \frac{V_f - V_t}{V_t} \times 100
\]

Where,
- \(V_t \) = initial tapped volume
- \(V_f \) = final tapped volume

Acceptable range for tapped density is 1.2% to 2.0%
volume (Vo). The tapped density (Dt) is calculated in g/ml by the formula:

$$Dt = \frac{M}{Vo}$$

Where,
M = weight of sample powder
Vo = final tapped volume

Compressibility Index and Hausner Ratio

Compressibility Index and Hausner Ratio are measures of the propensity of a powder to be compressed. As such they are measures of relative importance of interparticulate interactions. In free flowing powder, such interactions are less significant and bulk & tapped density difference is close. For poorer flowing materials, this difference is greater.

a) Compressibility Index (%) Compressibility

Carr’s compressibility index i.e., % compressibility indicates the flow property and packing ability of the tablet. It is determined by measuring both the bulk and tapped density of a powder. When the % compressibility ranges from 5 to 16, the materials have acceptable flow property and packing ability. Compressibility Index is calculated using following equation:

$$CI (\%) = \frac{|(Dt - Db)/Dt| \times 100}{1}$$

Where,
Dt = tapped density
Db = bulk density

b) Hausner’s Ratio

The Hausner ratio indicates the flowability and packing ability of the tablet. When the Hausner ratio is close to 1, materials have acceptable flow and packing ability. Hausner Ratio is calculated using the formula:

$$Hausner \text{ Ratio} = \frac{Dt}{Db}$$

Where,
Dt = tapped density
Db = bulk density

ACCEPTANCE CRITERIA OF FLOW PROPERTIES

<table>
<thead>
<tr>
<th>Compressibility Index</th>
<th>Flow Character</th>
<th>Hausner Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 10</td>
<td>Excellent</td>
<td>1.00 – 1.11</td>
</tr>
<tr>
<td>11 – 15</td>
<td>Good</td>
<td>1.12 – 1.18</td>
</tr>
<tr>
<td>16 – 20</td>
<td>Fair</td>
<td>1.19 – 1.25</td>
</tr>
<tr>
<td>21 – 25</td>
<td>Passable</td>
<td>1.26 – 1.34</td>
</tr>
<tr>
<td>26 – 31</td>
<td>Poor</td>
<td>1.35 – 1.45</td>
</tr>
<tr>
<td>32 – 37</td>
<td>Very Poor</td>
<td>1.46 – 1.59</td>
</tr>
<tr>
<td>> 38</td>
<td>Very Very Poor</td>
<td>> 1.60</td>
</tr>
</tbody>
</table>

Drug – Excipient Compatibility Study

Drug is in intimate contact with one or more excipient in all the dosage forms, which later it could affect the stability of drug. Knowledge of drug excipient interaction is useful in selecting an appropriate excipient.

Procedure

API and excipient are taken in the ratios above mentioned and mixed together in a polybag for 5 min. Each mixture is allotted sample code for identification. 4 sets of sample are allocated where each sample mixture is divided into 1g in its corresponding glass vial (USP Type I) at different conditions. All vials are properly sealed and loaded at respective conditions. The samples are to be checked for its description, related substance and water content by KF.

Sampling Schedule

The prepared drug and excipient mixtures are evaluated at various intervals for related substances by HPLC as per the following conditions and time intervals.

FORMULATIONS

Formulation trails

10 formulation trails are prepared to get immediate release of Candesartan cilxetil tablets

FORMULATION SELECTION

<table>
<thead>
<tr>
<th>TRAILS DONE</th>
<th>BATCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Using povidone k-30 as binder</td>
</tr>
<tr>
<td>F2</td>
<td>Reducing PEG and Ca CMC concentration</td>
</tr>
<tr>
<td>F3</td>
<td>Reducing PEG6000 content</td>
</tr>
<tr>
<td>F4</td>
<td>With out PEG6000</td>
</tr>
<tr>
<td>F5</td>
<td>By incorporating MCC</td>
</tr>
<tr>
<td>F6</td>
<td>With out lactose and PEG</td>
</tr>
<tr>
<td>F7</td>
<td>With out corn starch</td>
</tr>
<tr>
<td>F8</td>
<td>Reducing quantity of corn starch</td>
</tr>
<tr>
<td>F9</td>
<td>Direct compression method</td>
</tr>
<tr>
<td>F10</td>
<td>By dry granulation(slugging process)</td>
</tr>
<tr>
<td>No.</td>
<td>INGREDIENTS</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>1.</td>
<td>Candesartan cilexetil</td>
</tr>
<tr>
<td>2.</td>
<td>Lactose monohydrate</td>
</tr>
<tr>
<td>3.</td>
<td>Spray dried lactose</td>
</tr>
<tr>
<td>4.</td>
<td>MCC pH 101</td>
</tr>
<tr>
<td>5.</td>
<td>PEG 6000</td>
</tr>
<tr>
<td>6.</td>
<td>Ferric oxide red</td>
</tr>
<tr>
<td>7.</td>
<td>Corn starch (PG star)</td>
</tr>
<tr>
<td>8.</td>
<td>Klucel (HPC)EF</td>
</tr>
<tr>
<td>9.</td>
<td>Purified water</td>
</tr>
<tr>
<td>10.</td>
<td>Ca CMC</td>
</tr>
<tr>
<td>11.</td>
<td>PVP K-30</td>
</tr>
<tr>
<td>12.</td>
<td>Magnesium stearate</td>
</tr>
<tr>
<td>13.</td>
<td>Sodium lauryl sulphate</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

PROCEDURES

Wet granulation
- Candesartan cilexetil, lactose monohydrate, PEG6000, Avicel, cornstarch and HPC are weighed and passed through 40mesh and then mixed.
- Ferric oxide is weighed and added to above blend and then mixed.
- The above blend is to make as wet mass by using purified water as quantity mentioned in formula.
- That dough mass is passed through 12mesh to get wet granules.
- These granules are dried at 65°C by using fluid bed drier.
- Dried granules are passed through 18mesh and then mixed.
- Ca CMC and magnesium stearate are weighed and passed through 40mesh and added to above blend and then mixed.

Dry granulation (slugging process)
- Candesartan cilexetil, lactose monohydrate, starch 1500 are weighed and passed through 30mesh and then mixed.
- PEG 6000 is taken in mortar to make fine powder by using pestle and added to above blend and then mixed.
- Ferric oxide is added to above.
- That blend is to made as slugs by using 18mm punches. Slugs are milled through 8mm mesh by using multimill.
- Milled granules are passed through 16mesh and then mixed.
- Weigh CaCMC and magnesium stearate are weighed and passed through 30mesh and added to above blend then mixed.

Direct compression
- Weigh candesartan cilexetil, spray dried lactose, PEG6000, starch1500 are weighed and passed through 40mesh and then mixed.
- Ferric oxide is added to above blend and then mixed.
- Ca CMC and magnesium stearate is weighed and passed through 40mesh and added to above blend and then mixed.

INVITRO-CHARACTERIZATION

Weight variation:
Composite sample of tablets (usually 10) are taken and weighed through out the compression process. The composite weight divided by 10 gives average weight but contains usual problems of averaged values. Within the composite sample that has an acceptable average weight, there could be a tablet excessively over weight or underweight. To alleviate this problem the united states of pharmacopeia provides limits for the permissible variations.
Acetonitrile

Chemicals and reagents:

- Candesartan Cilexetil
- Acetonitrile
- Purified water - milli-Q grade
- Potassium dihydrogen phosphate monobasic
- Sodium hydroxide

Apparatus:

- Analytical balance, volumetric flask, pipette, syringe, dissolution apparatus.
- HPLC equipped with UV-detector and data handle system.

Disintegration

The drug to be readily available to the body, it must be in solution phase. For most tablets the first important step toward solution is break down of the tablet into smaller particles or granules, a process known as disintegration. The time that a tablet take to disintegrate is measured in a device as described in the USP/NF. The USP method to test disintegration uses 6 glass tubes that are 3 inches long, open at the top, and held against a 10-mesh screen at the bottom end of the basket rack assembly.

Limit:

- Uncoated <15min, Coated <=30min, Enteric coated-within 1hr

Assay:

HPLC

Instrument:

HPLC equipped with UV detector and data handle system.

Apparatus:

- Analytical balance, volumetric flask, pipette, pH meter, filtration unit, 0.45μ membrane filter

Chemicals and reagent:

- Candesartan cilexetil
- Orthophosphoric acid- HPLC grade
- Acetonitrile –HPLC grade

Dissolution

The drug to be readily available to the body, it must be in solution phase. For most tablets the first important step toward solution is break down of the tablet into smaller particles or granules, a process known as disintegration. The time that a tablet take to disintegrate is measured in a device as described in the USP/NF. The USP method to test disintegration uses 6 glass tubes that are 3 inches long, open at the top, and held against a 10-mesh screen at the bottom end of the basket rack assembly.

Limit:

- Uncoated <15min, Coated <=30min, Enteric coated-within 1hr

Assay:

HPLC

Instrument:

HPLC equipped with UV detector and data handle system.

Apparatus:

- Analytical balance, volumetric flask, pipette, pH meter, filtration unit, 0.45μ membrane filter

Chemicals and reagent:

- Candesartan cilexetil
- Orthophosphoric acid- HPLC grade
- Acetonitrile –HPLC grade

Limits

<table>
<thead>
<tr>
<th>Average weight of tablets(mg)</th>
<th>Maximum percentage difference allowed(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 130</td>
<td>10</td>
</tr>
<tr>
<td>130-324</td>
<td>7.5</td>
</tr>
<tr>
<td>More than 324</td>
<td>5</td>
</tr>
</tbody>
</table>

Hardness

 Tablets require a certain amount of strength or hardness and resistance to friability to withstand mechanical shocks of handling in manufacture packaging and shipping. In addition, tablets should be able to withstand reasons for abuse when in the hands of the consumer. Tablet hardness has been defined as force required to break a tablet in a diametric compression test. To perform this test, a tablet is placed between two anvils, force is applied to the anvils and the crushing strength that just causes the tablet to break is recorded. Hardness is thus sometimes termed the tablet crushing strength. Several devices operating in this manner have been and continue to be used to test tablet hardness: Monsanto tester, Strong-cobb tester, Pizer tester, Erweka tester and Schleuniger tester.

Limit:

- Conventional Tablets: 5-15kg/cm², Chewable tablets: 3kg/cm², Sustained release tablets: 10-20kg/cm²

Friability

The laboratory friability tester is the Roche friabitator. It subjects a number of tablets to the combined effects of abrasion and shock by utilizing a plastic chamber that revolves at 100rpm dropper the tablets a distance of six inches with each revolution. Normally a preweighed tablet sample is placed in the friabitator, which is then operated for 100 revolutions. The tablets are then dusted and reweighed. Some chewable tablets or most effervescence tablets undergo high friability weight losses, which accounts for the special stack packaging that may be required for these types of tablets. When capping is observed on friability testing, the tablet should not be considered for commercial use, regardless of the percentage of loss seen.

Limit:

- 1.0%

Preparation

1ml of orthophosphoric acid is mixed with 1000ml of purified water and filter through 0.45µ membrane filter and degassed.

Sample preparation

5 tablets are weighed and transferred into a 100ml volumetric flask. 60ml of diluent is added and the volume is diluted with diluent. 5ml of above solution is transfe red into to volumetric flask and the volume is diluted with diluent.

Procedure

Blank standard preparation and sample preparation are injected in to chromatogram and the chromatogram is recorded separately and the peak area responses are measured for analyte peak and then % content of candesartan cilexetil is calculated by formula

Calculation

%content of candesartan

```
TA/SA*SW/100*5/50*TW/100*2*P/100*AVG.WT/LA*100
```

TA- peak area response due to candesartan from sample preparation

SA- peak area response from standard preparation

SW- weight of candesartan(in mg)

P - purity of candesartan

IN-VITRO DRUG RELEASE

Chromatographic conditions:

- Column : Hypersil BDS –C8(150*4.6mm)5µm
- Wavelength : UV-210nm
- Flowrate : 1.5ml/min
- Inj.vol : 10µl
- Column oven temp : 40°C
- Run time : 25min

Chromatographic conditions:

- Column : Hypersil BDS –C8(150*4.6mm)5µm
- Wavelength : UV-210nm
- Flowrate : 1.5ml/min
- Inj.vol : 10µl
- Column oven temp : 40°C
- Run time : 25min

Chromatographic conditions:

- Column : Hypersil BDS –C8(150*4.6mm)5µm
- Wavelength : UV-210nm
- Flowrate : 1.5ml/min
- Inj.vol : 10µl
- Column oven temp : 40°C
- Run time : 25min

Chromatographic conditions:

- Column : Hypersil BDS –C8(150*4.6mm)5µm
- Wavelength : UV-210nm
- Flowrate : 1.5ml/min
- Inj.vol : 10µl
- Column oven temp : 40°C
- Run time : 25min

Chromatographic conditions:

- Column : Hypersil BDS –C8(150*4.6mm)5µm
- Wavelength : UV-210nm
- Flowrate : 1.5ml/min
- Inj.vol : 10µl
- Column oven temp : 40°C
- Run time : 25min
Dissolution conditions

- **MEDIUM**: 0.7% tween 20 in 0.05M phosphate buffer pH6.5
- **VOLUMME**: 900ml
- **TEMP**: 37°C±0.5°C
- **APPARATUS**: USP type-II(paddle)
- **Rpm**: 50
- **TIME INTERVAL**: 10, 20, 30, 45, 60 min

Preparation

- **0.2M sodium hydroxide solution**: 8g of NaOH is dissolved in H₂O and diluted to 100ml with water.
- **0.2M potassium phosphate monobasic solution**: 27.22g of potassium phosphate monobasic is dissolved in water and diluted to 100ml with water.
- **0.05M phosphate buffer Ph 6.5 containing 0.7% tween 20**: 250ml of 0.2m potassium dihydrogen orthophosphate is transferred into to 1000ml volumetric flask and 65ml of 0.2M sodium hydroxide is added then diluted to volume with water. If necessary pH of the solution is adjusted to 6.5 with 0.2M sodium hydroxide solution then 7g of tween 20 is added and mixed well.

Chromatographic conditions

- **Column**: Hyper sil BDS-C8(150*4.6mm)
- **Wave length**: UV-210nm
- **Flow rate**: 1.5ml/min
- **Injection volume**: 10µl
- **Column over temp**: 40°C
- **Run time**: 10min

Buffer preparation

1ml of orthophosphoric acid is mixed in 1000ml of purified water. The solution is filtered through 0.45µ membrane filter.

Mobile phase preparation

Mixture of buffer and acetonitrile in ratio of 40:60v/v is prepared and filtered.

Standard preparation

35.5 mg of candesartan cilexetil working standard is weighed and transferred into a 200ml volumetric flask. 20ml of acetonitrile is added and sonicated to dissolve. The solution is cooled to room temperature and the volume is diluted with disso medium. 5ml of standard stock preparation is transferred into 25ml volumetric flask and the volume is diluted to with disso medium.

Sample preparation

One tablet is placed in each of six disso flask containing 900ml of disso medium, previously maintained at 37°C±0.5°C taking care to exclude air bubbles from the surface of each dosage unit and the apparatus is immediately operated at specified time intervals. After completion of each specified time interval a portion of solution is withdrawn from zone mid way between the surface of the dissolution medium and top of the rotary blade not less than 1cm from the vessel wall and filtered through 0.45µ membrane filter.

Acceptance criteria

- %RSD for replicate injection of peak area response for candesartan cilexetil peak from the standard preparation should be not more than 2.
- Tailing factor for candesartan cilexetil peak should be NMT 2.
- No.of theoretical plates for candesartan cilexetil should not be less than 2000.

Procedure

Blank, standard preparation and sample preparation are injected in to chromatograms separately in equal volumes and chromatographs are recorded and peak area responses are measured for the analyte peak and the %drug dissolved of candesartan is calculated by formula.

Calculation

\[
\text{TA/SA*SW/200*5/25*900/1*P/100*100/32}
\]

RESULTS AND DISCUSSION

Preformulation studies

Preformulation studies like Physical Characterization, Solubility, Moisture Content, Flow properties like Angle of Repose, Bulk Density, Tapped Density, Compressibility Index and Hausner ratio are performed.

a) Physical Characterization of API

RESULTS OF PARTICLE SIZE ANALYSIS

<table>
<thead>
<tr>
<th>S.No</th>
<th>Diameter(mm)</th>
<th>Particle Size(µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.1</td>
<td>0.724</td>
</tr>
<tr>
<td>2.</td>
<td>0.5</td>
<td>1.490</td>
</tr>
<tr>
<td>3.</td>
<td>0.9</td>
<td>2.835</td>
</tr>
</tbody>
</table>

Discussion

The above result shows that physical characterization of the drug candidate (API) complies with the USP specifications.

b) Particle size analysis

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Flow Properties</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bulk density (g/ml)</td>
<td>0.2647</td>
</tr>
<tr>
<td>2.</td>
<td>Tapped density (g/ml)</td>
<td>0.562</td>
</tr>
<tr>
<td>3.</td>
<td>Carr’s index (%)</td>
<td>52.94</td>
</tr>
<tr>
<td>4.</td>
<td>Hausner’s ratio</td>
<td>2.125</td>
</tr>
<tr>
<td>5.</td>
<td>Angle of repose</td>
<td>13°</td>
</tr>
</tbody>
</table>

Discussion

Particle size of the API is determined by Malvern Instrument. The above table illustrates the size of the particles.

c) Flow Properties

- **Bulk density (g/ml)**
- **Tapped density (g/ml)**
- **Carr’s index (%)**
- **Hausner’s ratio**
- **Angle of repose**

Discussion

From the above results, it is found that the API has “poor” flow properties.
d) Compatibility studies results

<table>
<thead>
<tr>
<th>Excipients</th>
<th>% Known impurities</th>
<th>% Unknown impurities</th>
<th>Total impurities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose</td>
<td>0.15</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>PEG 6000</td>
<td>0.1</td>
<td>0.15</td>
<td>0.4</td>
</tr>
<tr>
<td>PG Starch</td>
<td>0.1</td>
<td>0.12</td>
<td>0.3</td>
</tr>
<tr>
<td>HPC</td>
<td>0.2</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>Ca CMC</td>
<td>0.2</td>
<td>0.18</td>
<td>0.28</td>
</tr>
<tr>
<td>Mg Stearate</td>
<td>0.1</td>
<td>0.15</td>
<td>0.18</td>
</tr>
</tbody>
</table>

INDEX

I = INITIAL
II = LONG TERM (28 DAYS)
III = ACCELERATED (14 DAYS)

PHYSICAL APPEARANCE FOR COMPATIBILITY STUDY

<table>
<thead>
<tr>
<th>INGREDIENTS</th>
<th>INITIAL 25°C+2°C,60%RH+5%RH</th>
<th>14TH DAY 55°C+2°C,75%RH+5%RH</th>
<th>28TH DAY 40°C+2°C,75%RH+5%RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candesartan</td>
<td>White powder</td>
<td>White powder</td>
<td>White powder</td>
</tr>
<tr>
<td>C.C+ Lactose</td>
<td>White powder</td>
<td>White powder</td>
<td>White powder</td>
</tr>
<tr>
<td>C.C +PEG 6000</td>
<td>White crystalline powder</td>
<td>White crystalline powder</td>
<td>White crystalline powder</td>
</tr>
<tr>
<td>C.C+ PG starch</td>
<td>White powder</td>
<td>White powder</td>
<td>White powder</td>
</tr>
<tr>
<td>C.C+ ferric oxide</td>
<td>Brick red colour</td>
<td>Brick red colour</td>
<td>Brick red colour</td>
</tr>
<tr>
<td>C.C+ HPC</td>
<td>White Crystalline Powder</td>
<td>White Crystalline Powder</td>
<td>White Crystalline Powder</td>
</tr>
<tr>
<td>C.C+ Ca CMC</td>
<td>White powder</td>
<td>White powder</td>
<td>White powder</td>
</tr>
<tr>
<td>C.C+magnesium stearate</td>
<td>White powder</td>
<td>White powder</td>
<td>White powder</td>
</tr>
</tbody>
</table>

EVALUATION OF GRANULES

<table>
<thead>
<tr>
<th>BATCH</th>
<th>ANGLE OF REPPOSE°</th>
<th>BULK DENSITY g/ml</th>
<th>TAPPED DENSITY g/ml</th>
<th>COMPRESSIBILITY INDEX (%)</th>
<th>HAUSNER RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>34±0.06</td>
<td>0.519±0.03</td>
<td>0.732±0.06</td>
<td>29.09±0.07</td>
<td>1.443±0.03</td>
</tr>
<tr>
<td>F2</td>
<td>29±0.04</td>
<td>0.537±0.03</td>
<td>0.761±0.05</td>
<td>30.60±0.03</td>
<td>1.417±0.06</td>
</tr>
<tr>
<td>F3</td>
<td>33±0.06</td>
<td>0.510±0.05</td>
<td>0.735±0.04</td>
<td>30.61±0.06</td>
<td>1.417±0.05</td>
</tr>
<tr>
<td>F4</td>
<td>39±0.02</td>
<td>0.525±0.04</td>
<td>0.714±0.04</td>
<td>26.47±0.06</td>
<td>1.360±0.07</td>
</tr>
<tr>
<td>F5</td>
<td>28±0.04</td>
<td>0.609±0.02</td>
<td>0.781±0.05</td>
<td>19.46±0.05</td>
<td>1.241±0.04</td>
</tr>
<tr>
<td>F6</td>
<td>27±0.06</td>
<td>0.510±0.03</td>
<td>0.641±0.03</td>
<td>20.40±0.05</td>
<td>1.250±0.05</td>
</tr>
<tr>
<td>F7</td>
<td>39±0.04</td>
<td>0.50 ±0.04</td>
<td>0.735±0.01</td>
<td>32.00±0.07</td>
<td>1.470±0.05</td>
</tr>
<tr>
<td>F8</td>
<td>35±0.07</td>
<td>0.520±0.06</td>
<td>0.757±0.03</td>
<td>31.25±0.05</td>
<td>1.454±0.06</td>
</tr>
<tr>
<td>F9</td>
<td>44±0.05</td>
<td>0.583±0.07</td>
<td>0.745±0.05</td>
<td>21.74±0.06</td>
<td>1.277±0.07</td>
</tr>
<tr>
<td>F10</td>
<td>32±0.04</td>
<td>0.510±0.06</td>
<td>0.727±0.07</td>
<td>29.69±0.03</td>
<td>1.419±0.07</td>
</tr>
</tbody>
</table>

COMPRESSION RESULTS

<table>
<thead>
<tr>
<th>BATCH NO</th>
<th>WT VARIATION (mg)</th>
<th>HARDNESS (KP)</th>
<th>THICKNESS (mm)</th>
<th>Friability (%)</th>
<th>D.T (min.sec)</th>
<th>ASSAY (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>260.26±0.007</td>
<td>5.26±0.32</td>
<td>3.461±0.0087</td>
<td>0.07</td>
<td>11.23±0.03</td>
<td>96.3</td>
</tr>
<tr>
<td>F2</td>
<td>259.5±0.182</td>
<td>6.19±0.22</td>
<td>3.45±0.020</td>
<td>0.214</td>
<td>8.50±0.07</td>
<td>98.4</td>
</tr>
<tr>
<td>F3</td>
<td>260.4±0.00</td>
<td>9.75±0.514</td>
<td>3.49±0.025</td>
<td>0.24</td>
<td>14.05±0.06</td>
<td>97.5</td>
</tr>
<tr>
<td>F4</td>
<td>260.4±0.08</td>
<td>10.44±0.492</td>
<td>3.56±0.021</td>
<td>0.17</td>
<td>11.33±0.07</td>
<td>99.3</td>
</tr>
<tr>
<td>F5</td>
<td>260.3±0.02</td>
<td>9.9±0.472</td>
<td>3.53±0.020</td>
<td>0.00</td>
<td>11±0.03</td>
<td>99.8</td>
</tr>
<tr>
<td>F6</td>
<td>258.2±0.03</td>
<td>8.7±0.402</td>
<td>3.47±0.200</td>
<td>0.06</td>
<td>5.30±0.06</td>
<td>99.5</td>
</tr>
<tr>
<td>F7</td>
<td>258.5±0.06</td>
<td>10.17±0.305</td>
<td>3.475±0.027</td>
<td>0.13</td>
<td>12.50±0.07</td>
<td>100.9</td>
</tr>
<tr>
<td>F8</td>
<td>260.2±0.007</td>
<td>10.28±0.329</td>
<td>3.55±0.013</td>
<td>1.15</td>
<td>10.25±0.05</td>
<td>98.7</td>
</tr>
<tr>
<td>F9</td>
<td>260.4±0.130</td>
<td>7.1±0.278</td>
<td>3.862±0.052</td>
<td>1.11</td>
<td>7.20±0.04</td>
<td>96.0</td>
</tr>
<tr>
<td>F10</td>
<td>260.4±0.11</td>
<td>9.29±0.207</td>
<td>3.59±0.021</td>
<td>0.23</td>
<td>8.34±0.05</td>
<td>102.3</td>
</tr>
<tr>
<td>M</td>
<td>259.5±0.01</td>
<td>9.9±0.44</td>
<td>3.50±0.049</td>
<td>0.02</td>
<td>11.17±0.05</td>
<td>99.7</td>
</tr>
</tbody>
</table>
COMPARISON OF HARDNESS FOR DIFFERENT TRIALS

COMPARISON OF THICKNESS FOR DIFFERENT TRIALS

COMPARISON OF FRIABILITY FOR DIFFERENT TRIALS
COMPARISON OF DISINTEGRATION FOR DIFFERENT TRIALS

DISINTEGRATION FOR DIFFERENT FORMULATIONS

<table>
<thead>
<tr>
<th>S.O</th>
<th>TIM</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
<th>F10</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>48.4±0.9</td>
<td>68.9±1.3</td>
<td>31.6±0.6</td>
<td>56.5±1.1</td>
<td>56.9±1.1</td>
<td>84.7±1.6</td>
<td>34.9±0.6</td>
<td>38.6±0.7</td>
<td>80±1.6</td>
<td>84.8±1.6</td>
<td>40.9±0.8</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>67.6±1.3</td>
<td>96±1.9</td>
<td>61.8±1.2</td>
<td>86.5±1.7</td>
<td>95.0±1.9</td>
<td>94.7±1.8</td>
<td>70.8±1.4</td>
<td>81.8±1.6</td>
<td>87.8±1.7</td>
<td>91.8±1.8</td>
<td>73.9±1.4</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>76.4±1.5</td>
<td>97.6±1.9</td>
<td>84±1.6</td>
<td>96.2±1.9</td>
<td>101.3±2</td>
<td>98.9±1.9</td>
<td>85.8±1.7</td>
<td>98.6±1.9</td>
<td>91.2±1.8</td>
<td>95.1±1.9</td>
<td>89.5±1.7</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>82.3±1.6</td>
<td>97.9±1.9</td>
<td>94.9±1.8</td>
<td>96.4±1.9</td>
<td>103.6±2</td>
<td>104.6±2</td>
<td>90.8±1.8</td>
<td>103.5±2</td>
<td>93.4±1.8</td>
<td>96.5±1.9</td>
<td>96.2±1.9</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>86.4±1.7</td>
<td>98.2±1.9</td>
<td>98.9±1.9</td>
<td>97.1±1.9</td>
<td>104.4±2</td>
<td>104.6±2</td>
<td>93.1±1.8</td>
<td>105.6±2</td>
<td>94.7±1.8</td>
<td>97.7±1.9</td>
<td>98.6±1.9</td>
</tr>
</tbody>
</table>

DISSOLUTION PROFILE OF F1 AND F2

% DRUG RELEASE
DISSOLUTION PROFILE OF F3 AND F4

DISSOLUTION PROFILE OF F6 AND F7

DISSOLUTION PROFILE OF F8, F9 AND F10
COMPARISION OF F5 WITH MARKETED PRODUCT

CANDESARTAN DISSOLUTION BLANK

Sample Information

Sample Name: Candesartan Disso Blank
Sample Type: Standard
Vial: 1
Injection #: 1
Injection Volume: 10.00 ul
Run Time: 10.00 Minutes
Sample Set Name: Analyst Sekhar

Acquired By: Analyst
Data Acquired: 9/10/2010 1:29:42 PM
Acq. Method Set: Candesartan_Disso_MTH
Data Processed: 9/15/2010 9:27:10 AM
Processing Method: Candesartan_Disso_PROC
Channel Name: 246T_Channel 1
Proc. Chnl Descrip.: 210 nm

Auto-Scaled Chromatogram

CANDESARTAN STANDARD CURVES

Reported By User: RD Development [Developer]
Project Name: Candesartan Clexetil Tablets

Sample Name: Candesartan Disso Std SST; Vial 2; Injection 1; Channel 246T Channel 1;
Sample Name: Candesartan Disso Std SST; Column ID NATRA/DLC166; System Name R_A_063; Injection Volume 10.00; Channel Description 210 nm

Sample Name: Candesartan Disso Std SST; Vial 2; Injection 2; Channel 246T Channel 1;
Sample Name: Candesartan Disso Std SST; Column ID NATRA/DLC166; System Name R_A_063; Injection Volume 10.00; Channel Description 210 nm
Component Summary Table
Name: Candesartan Citextil

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Name</th>
<th>RT</th>
<th>Area</th>
<th>USP Tailing</th>
<th>USP Plate Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Candesartan Disso SST</td>
<td>4.2</td>
<td>1280775</td>
<td>1.2</td>
<td>4566.1</td>
</tr>
<tr>
<td>2</td>
<td>Candesartan Disso SST</td>
<td>4.2</td>
<td>1281249</td>
<td>1.2</td>
<td>4545.8</td>
</tr>
<tr>
<td>3</td>
<td>Candesartan Disso SST</td>
<td>4.2</td>
<td>1281033</td>
<td>1.2</td>
<td>4521.9</td>
</tr>
<tr>
<td>4</td>
<td>Candesartan Disso SST</td>
<td>4.2</td>
<td>1281567</td>
<td>1.2</td>
<td>4515.7</td>
</tr>
<tr>
<td>5</td>
<td>Candesartan Disso SST</td>
<td>4.2</td>
<td>1280872</td>
<td>1.2</td>
<td>4504.2</td>
</tr>
<tr>
<td>6</td>
<td>Candesartan Disso SST</td>
<td>4.2</td>
<td>1279184</td>
<td>1.2</td>
<td>4467.7</td>
</tr>
</tbody>
</table>

Mean: 4.2, Area: 831.71, USP Tailing: 1.15, USP Plate Count: 4520.2

STABILITY REPORT
Dissolution

<table>
<thead>
<tr>
<th>MONTHS</th>
<th>Accelerated stability (40°C±2°C/75%RH+5%RH)</th>
<th>Long term stability (25°C±2°C/60%RH+5%RH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>30min 90.7%</td>
<td>30min 93.8%</td>
</tr>
<tr>
<td></td>
<td>45min 94.8%</td>
<td>45min 95.9%</td>
</tr>
<tr>
<td>2nd</td>
<td>30min 80.7%</td>
<td>30min 86.5%</td>
</tr>
<tr>
<td></td>
<td>45min 86.9%</td>
<td>45min 80.3%</td>
</tr>
<tr>
<td>3rd</td>
<td>30min 81.1%</td>
<td>30min 77%</td>
</tr>
<tr>
<td></td>
<td>45min 85.2%</td>
<td>45min 85.3%</td>
</tr>
</tbody>
</table>

Assay

<table>
<thead>
<tr>
<th>MONTHS</th>
<th>Accelerated stability (40°C±2°C/75%RH+5%RH)</th>
<th>Long term stability (25°C±2°C/60%RH+5%RH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>98.7%</td>
<td>98.6%</td>
</tr>
<tr>
<td>2nd</td>
<td>97.6%</td>
<td>98.2%</td>
</tr>
<tr>
<td>3rd</td>
<td>97.5%</td>
<td>97.1%</td>
</tr>
</tbody>
</table>

Water content

<table>
<thead>
<tr>
<th>MONTHS</th>
<th>Accelerated stability (40°C±2°C/75%RH+5%RH)</th>
<th>Long term stability (25°C±2°C/60%RH+5%RH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>3.8%</td>
<td>2.75%</td>
</tr>
<tr>
<td>2nd</td>
<td>3.860%</td>
<td>3.198%</td>
</tr>
<tr>
<td>3rd</td>
<td>4.422%</td>
<td>3.888%</td>
</tr>
</tbody>
</table>
DISCUSSION

No Characteristic change in the color of the powder and no additional degradation of the product is observed. The increase in impurities at the end of the accelerated condition is not significant. All the excipients are stable and compatible with active ingredient. Hence, it is recommended that the above excipients can be used in further formulation development trials.

The physical appearance and HPLC studies are performed to find out the residual impurities. The residual impurities are candesartan acid, candesartan methyl ester, candesartan ethyl ester, desethyl candesartan cilexetil, N2 – ethyl candesartan cilexetil.

F5, F6 gives “EXCELLENT” flow properties where as F1-F4,F10 gives “POOR” flow properties F7,F8 is “VERY POOR” flow and F9 gives “PASSABLE” flow

CONCLUSION

Since the flow properties of the drug candidate are important for the selection of suitable method for granulation of the powder mixture, the flow of the drug is analyzed before the selection of granulation techniques. Hausner’s ratio (>1.35), compressibility index (>25) and angle of repose (<36) indicates poor flowability of the drug candidate. As the drug candidate, shows poor flowability the wet granulation technique has been selected.

The purpose of carrying out optimization study is to select the best possible formulation. Powders intended for compression into tablets must process good compressibility. Problems in cause variation in die filling and consequently variation in tablet weight and strength.

The important parameter that needs to be optimized in the development of immediate release tablets is the selection of different excipients. In the selection of suitable filler, lactose monohydrate is used. It showed good thickness, friability, and disintegration comparable to reference product.

The selection of suitable binder for the formulation of immediate release tablet is very important because it affects friability, hardness, disintegration and after all in-vitro release of the drug from the formulation. In this study, HPC and MCC is taken into consideration as binder and selection of suitable binder is carried out by evaluating the different physical parameter. The tablet prepared by using HPC and MCC showed similar thickness, friability, disintegration time. The release profiles of the formulations revealed that the incorporation HPC slowed down release rate. Hence, MCC is selected as suitable binder.

During the formulation development of immediate release tablet, the selection of suitable disintegrant is very important. In this experiment, calcium CMC is used. Concentration of calcium CMC is changed in different formulation. Upto 15% concentration is generally recommended in tablets preparation. At 9.6% concentration it gives best results than reference product.

Candesartan cilexetil does not possess good fluidity. The lubricant is added in the formulation because of it, a uniform flow from hopper to die is possible. It prevents adhesion of tablet material to machine parts such as punches and die by reducing inter particulate friction and facilitates the ejection of tablets from the die cavity. In this PEG 6000 and magnesium sterate are taken. Compare to PEG, magnesium sterate is taken in low concentration and it gives best flowability.

The optimized batch of Candesartan Cilexetil tablet containing 38% MCC formulation is studied for the different physical parameter and in-vitro release profile. It is observed that the parameters are best comparable with the marketed formulation. It gives the first order kinetics of release. Long term and accelerated stability studies are done for the best formulation.

The optimized batch(F5) gives rapid on set of action when compared to innovator product.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared