INTRODUCTION

Helminths (Greek word meaning worms), it has plagued in humans prior to our recorded olden times. Helminths are considered most common agents of human's infections especially in developing countries and actively participate in global burden of diseases. Eggs of these intestinal worms found in the human mummified feces dating thousands of years ago. In 2002 it was estimated 1.5 billion with Acaris, 1.3 billion with hook worm and 1.1 billion with trichorisis infection were dignosed. World Health Organization estimated 2 billion people infected with helminthes and it was also estimated that 100% of all age group of school children are at risk of morbidity. The major phyla of helminths are nematodes (round worms) which are soil-transmitted helminths that mostly cause the intestinal infection; filarial worms cause the onchocerciasis and lymphatic filariasis, while platyhelminths (flatworms) also known as trematodes like schistosomes and cestodes causes cysticerosis. The plant of *Camellia sinensis* is an inhabitant of Southeast Asian region commonly known as green tea. Whereas currently, it is cultivated in more than 30 countries of world. It is considered as most consumed beverage of world. Primarily, green tea is being widely consumed in China, Pakistan, India, North Africa and Middle East. *C. sinensis* plant contain more than 700 chemicals most of them closely related to human health like theobromine, gallotannic acid, vitamins (C, E and K), caffeine polysaccharides. *Camellia sinensis* has high content of polyphenols which is responsible for bitter taste. Polyphenol is effective against many diseases like osteoporosis, liver disease. It has also been also considered that the extract of *C. sinensis* is effective against bacterial and viral infections. It has been also revealed in previous study that green tea extract has beneficial anthelmintic effect. Additionally some studies suggested that intake of green has a beneficial impact on cognitive function, bone density, kidney stones and dental caries. The present preliminary study was conducted on crude aqueous extract of *Camellia sinensis* (green tea) for the evaluation of anthelmintic activity against model worm adult earthworm (*Pheretima posthuma*).

MATERIALS AND METHOD

Preparation of extract

The Green tea was purchased from the retail market in Karachi-Pakistan in reasonable price in large quantity for performing various biological activities. The extract was prepared in the concentration of 5% in distilled water. The aqueous extract was prepared by boiling method of tea in water bath by constant agitation for 15 minutes. Later, all the coarse suspended particles of tea were first removed by using strainer and then by passing via 0.22um filter. The extract was stored in refrigerator in small vials as aliquots till use.

Selection of worms

The anthelmintic activity was done by following the method with slight modifications. The assay was carried out on adult earthworm (*Pheretima posthuma*) owing to its resemblance in terms of anatomy and physiology with the intestinal roundworm parasitic of human beings. One of the plausible reasons for selecting this worm as a model for study is its easy availability. Because of this reason; earthworms have been used extensively for in vitro initial investigation of anthelmintic compounds.

Collection of worms

Earthworms of approximatly with the size of 3 to 5 cm in length and 0.1 to 0.2 cm width, measured by ruler were collected from moist garden soil of Federal Urdou University of Arts, science and Technology-Karachi Pakistan with the help of zoologists. All the worms were washed with normal saline in order to remove the soil particles, debris and fecal contents and kept them in phosphate buffer saline (PBS). Anthelmintic assay

The earthworms were divided into three groups. Each group consisting of six earthworms (approximately equal size). Group first serve as control, receive only normal saline; Group second serve as standard, receive standard Piperazine...
citrate and Group third serve as aqueous extract of different concentration\(^{36}\). All the extracts and the standard (Piperazine citrate) solution in distilled water were freshly prepared before starting the experiments.

Anthelmintic observation
Observations were recorded for the time until the paralysis as well as death of an individual worm occurred\(^{30-31}\). The paralysis was declared when the worms were not able to move even in normal saline\(^2\). Death was considered when the worms lost their motility followed with fading away of their body colors\(^33\).

RESULTS AND DISCUSSION

Anthelmintics are the drugs that expel out parasitic worms (helminthes) from the body, by either causing paralysis or by directly killing them\(^34\). Moreover, the conventionally employed agents for the treatment of helminthic infections are also acquiring resistance with chemotherapeutic agents because of the exposure of constant same chemical nature compound toxicity complications\(^35\), un-economical and nonavailability of drugs in remote areas\(^36\).

In the current study, in earthworms, the aqueous extract of tea (Camellia sinensis) showed anthelmintic activity. Earthworms belonging to control group showed paralysis time at the concentration of 25mg/ml, 50mg/ml and 100mg/ml i.e. 96.46 + 0.46 mins, 78.23 + 0.25 mins and 62.43+ 0.11 mins while; death time 160.06+ 0.11 mins, 142.2+ 0.34 mins and 111.7+ 0.26 mins respectively as indicated in Table 1. On the other hand, the standard reference compound piperazine citrate showed the time of paralysis at the concentration of 25mg/ml, 50mg/ml and 100mg/ml i.e. showed the time of paralysis at the concentration of 25mg/ml, 50mg/ml and 100mg/ml i.e 18.36 + 0.15 mins, 12+ 0.00 mins and 08.84 + 0.03mins respectively while; death time at 54.36 + 0.40 mins, 46.46 +0.40 mins, 13.6+ 0.17 mins respectively as indicated in Table 1. In case of aqueous extract of tea (Camellia sinensis) group, the paralysis at the concentration of 25mg/ml, 50mg/ml and 100mg/ml i.e. 44.86+ 0.41 mins, 22.16+ 1.06 mins, 10.7 + 0.43 mins respectively death time at 120.46 +0.25 mins, 92+0.51 mins, 80.7+ 0.51 mins respectively as indicated in Table 2. The activity was observed in dose dependent way in all groups including control, standard drug ad extract. The results of similar study earlier conducted\(^5\) that noted the aqueous extract of tea (50mg/ml) showed paralysis within 27.02 min & time of death 47.07 mins while, aqueous extract (100mg/ml) showed paralysis within 21.19 min & time of Death 37.02 mins. Piperazine citrate causes flaccid paralysis and expel out the worm by peristalsis. According to mechanism of action, piperazine citrate induces paralysis by increasing the chloride ion conductance of worm muscle membrane which is responsible of hyper polarization and reduced excitability that leads to muscle relaxation and results in expulsion of the worm by the action of peristalsis\(^37\). The literature reports reveal that caffeine, theobromine, polysaccharides, gallotannic acid, vitamins (C, E and K), amino acids, flavanoids and some other pytoconstituents\(^38\).

Phychoanalytical analysis of the crude extracts revealed presence of flavanoids as one of the very important chemical constituents. Polyphenolic compounds show anthelmintic activity\(^39\). Similarly, in the present investigation also the observed anthelmintic potential of test extract may be due to presence of similar phytoconstituents\(^12\).

CONCLUSION

The current study is the preliminary evaluation of crude extract of Camellia sinensis (green tea) having anthelmintic potential. Globally, today helminthic infections both in humans and cattle's are a serious growing issue due to the availability of limited and effective anthelmintic drugs. The encouraging results of the undertaken study create further hope to explore in depth, design thorough experiments for better conclusion and ultimately develop a therapeutic molecule later. In the current scenario, there is a dire need to have an effective anthelmintic compound but also play a role in combating the developing resistance issues of current conventionally employed anthelmintic therapeutics as a good substitute.

ACKNOWLEDGEMENT

The authors are grateful to Dr. Uzair Khan, Assistant Professor (MRCC)-University of Karachi-Karachi-Pakistan for facilitating in the collection and identification of earthworms from the garden soil and Dr. Kanwal Nazim, Assistant Professor (MRCC)-University of Karachi-Karachi-Pakistan for the provision of the standard.

REFERENCES

3. PMCID:126866

Table 1: Anthelmintic activity of control and standard

<table>
<thead>
<tr>
<th>Concentration (mg/ml)</th>
<th>Paralysis time (mins)</th>
<th>Death time (mins)</th>
<th>Paralysis time (mins)</th>
<th>Death time (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>96.46 + 0.46</td>
<td>160.06+ 0.11</td>
<td>18.36 + 0.15</td>
<td>54.36 + 0.40</td>
</tr>
<tr>
<td>Standard</td>
<td>44.86+ 0.41</td>
<td>120.46 +0.25</td>
<td>92+0.51</td>
<td>80.7+ 0.51</td>
</tr>
</tbody>
</table>

Values are the mean ± S.E.M. of control and standard drug on three earthworms. Control is normal saline while standard drug is piperazine citrate.

Table 2: Anthelmintic activity of crude extract of Camellia sinensis (Green tea)

<table>
<thead>
<tr>
<th>Concentration (mg/ml)</th>
<th>Paralysis time (mins)</th>
<th>Death time (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25mg/ml</td>
<td>44.86+ 0.41</td>
<td>120.46 +0.25</td>
</tr>
<tr>
<td>50mg/ml</td>
<td>22.16+ 1.06</td>
<td>92+0.51</td>
</tr>
<tr>
<td>100mg/ml</td>
<td>10.7 + 0.43</td>
<td>80.7+ 0.51</td>
</tr>
</tbody>
</table>

Values are the mean ± S.E.M. of aqueous extract of Camellia sinensis (Green tea) on three earthworms.

FUUAST J. Biol (Accepted) anthelminthic activity of crude leaf extract of

36. Sherwani Sikandar Khan et al, 2011. RJPBCS Volume 2 Issue 2http://dx.doi.org/10.1076 /phbi.41.4.263.15666

37. Mueller O. In vitro anthelmintic activity of three medicinal plants against Haemonchus contortus

45. Sherwani Sikandar Khan et al, 2011. RJPBCS Volume 2 Issue 2http://dx.doi.org/10.1076 /phbi.41.4.263.15666

Cite this article as:

Source of support: Nil, Conflict of interest: None Declared