Research Article

THERMAL ANALYSIS OF EMBELIN SUBSTITUTED BENZOYL HALIDE DERIVATIVES

Ayyavoo Kaliyan1*, Vijay D Gangan2 and Trupti Banne1

1Quality Group (API and Formulation), Dhirubhai Ambani Life Sciences Centre, Navi Mumbai, India
2Department of Chemistry, Thakur College of Science and Commerce, Thakur Village, Kandivali (E), Mumbai, India

*Corresponding Author Email: ayyavoo_vasanth@yahoo.com

Article Received on: 19/12/13 Revised on: 08/01/14 Approved for publication: 27/01/14

DOI: 10.7897/2230-8407.050225

ABSTRACT
This paper describes the extraction of embeline from its plant source. The embelin is highly handy in the medical management viz., cytotoxic, antibacterial, wound healing, chemo preventive, lipid lowering agent and many other medical usages. The substituted benzoyl ester derivative of the embelin molecule will also have the medical properties more or less than the parent embelin molecule. They substituted derivatives were synthesized by reacting embelin with different substituted benzoyl halides in the presence of pyridine as base and dichloromethane as solvent. Amongst them, Fluoro, bromo and Iodo (halides) substituted benzoate esters exhibited different thermal activities then its parent embeline molecule. These substituted benzoyl halides showed different thermal activities. These properties are varying with respect to the position of halide in the phenyl substituted ring. The thermal propertiss played vital role in altering lipid lowering activity of the molecule.

Keywords: Embelin, substituted benzoyl halides, Thermal analysis, Differential Scanning Calorimeter.

INTRODUCTION
The traditional molecule Embelin (2, 5-dihydroxy-3-undecyl-1, 4-benzoquinone) is a naturally occurring alkyl substituted hydroxy benzoquinone; it is extracted from Embelia ribes burn. (Family: Myrsinaceae). This Embelin molecule is widely used in the medical applications; like urinary tract infections, scorpion-sting, tooth ache and snake-bite. It has been reported that the molecule also possess antioxidant properties, diabetic and anti-inflammatory to relive fever. Embelin showed that has antifertility, anti implantation, lipid lowering activity and anticonvulsant activities. Hence; it is highly significant to study the substituted derivative of this drug molecule also important because of its medical properties. This paper describes the technical challenges confronting the Thermal characterization of embelin substituted benzoil halides derivatives using standard DSC (Differential Scanning Calorimeter). The molecule structure is confirmed with the help of various spectroscopic techniques viz., NMR (Nuclear Magnetic Resolution) for its proton position confirmations and (MS) Mass Spectra for its molecular weight confirmations; analysis followed by the embelin isolations. The positions of the halide in the benzoate esters are Ortho, Meta and Para respectively.

MATERIALS AND METHOD
Isolation of Embelin (RLS-01)
The fine powdered berries of Embelia ribes around (250 g) were sequentially extracted with petroleum ether, chloroform, ethyl acetate, methanol and water and by cold extraction method, collected organic extracts were separately concentrated under reduced pressure. The chloroform extract was first chromate graphed on silica gel and then triturated with petroleum ether, the crude embelin separates out. The petroleum ether layer was decanted, the residue was filtered through Buchner funnel and suck dried to yield around 25 g of crude embelin. The crude embelin is crystallized using Petroleum ether, the pure crystallized embelin is obtained in orange color flakes.

General method for the preparation of compounds (RLS-34, 36, 37, 38 and 41)
To a stirred solution of 2, 5-dihydroxy-3-undecyl-1,4-benzoquinone (1.0 g, 3.4 mille moles) in dichloromethane (20 ml) was added pyridine (1.1 ml, 13.6 mille moles). Clear solution of reaction mixture was obtained, into this 2-bromo benzoylechloride (1.35 g, 8.5 mille moles) was added in 15–20°C and stirred, allowed to attain 30°C (RT) and stirring was continued for next 24 h (TLC monitoring). The reaction was decomposed by adding water (200 ml). The aqueous layer was extracted with dichloromethane (3 x 50 ml), washed with water, brine and dried over anhydrous Na2SO4. The organic layer was concentrated to minimum, pre-adsorbed on silica gel and purified by silica gel (100 – 200 mesh) column chromatography with increase in concentration of ethyl acetate in petroleum ether obtained the pure mass (0.96 g, 52.45 %). Using these reaction conditions, the compounds RLS 34, RLS 36, RLS 37, RLS 38 and RLS 41 were synthesized with appropriate benzoil halide substituted derivatives. The derivates chemical names are as follows:-
- 2,5-Di-O-(2-bromophenylcarbonyl)-3-undecyl-1,4-benzoquinone (RLS 34)
- 2,5-Di-O-(4-bromophenylcarbonyl)-3-undecyl-1,4-benzoquinone (RLS 36)
- 2,5-Di-O-(2-iodophenylcarbonyl)-3-undecyl-1,4-benzoquinone (RLS 37)
- 2,5-Di-O-(3-fluorophenylcarbonyl)-3-undecyl-1,4-benzoquinone (RLS 38)
- 2,5-Di-O-(2-fluorophenylcarbonyl)-3-undecyl-1,4-benzoquinone (RLS 41)

Tools and Aids
Aluminium cup and seal / cover used for crimping the solid sample.

Page 119
The DSC analysis was performed on a Shimadzu DSC (TA-60).

Preparation of sample
Weigh accurately about 5.0 mg of each of the five samples in to an aluminum cup and crimped with aluminum cover separately.

Differential Scanning Calorimetry (DSC) method
The temperature program is followed as From 25°C to 600°C @ 10°C/Min.

Analysis by DSC
Thermal analysis has been extremely important analytical tool within the pharmaceutical industry. The instrument DSC has been generated renewed enthusiasm in thermal analysis for all the molecules. In the pharmaceutical industry the drug composition (formulation) is achieved based on the dissolution factor of the drug. The drug dissolution properties based up on the crystalline and amorphous solid state of drug product. The rate of drug dissolution is the only base factor for bio availability and this is one of the prime requirements of pharmaceutical scientists. In general the crystalline solid state of the molecules are arranged more regular manner then the amorphous solid state. Due to this solid state property, the crystalline state of the molecule, more stable and less soluble than amorphous state of molecules. Literature describes the solubility increase from crystalline to amorphous material has been reported to be between 10 and 1600 fold. In the DSC thermal analysis provides various solid state information’s, among this analysis two of the information’s will be consider in this study. The Melting points and Heat capacity of the five derivative molecules were given in the Table 1 and the Histogram of DSC is given in the Figure 1 to 6. It is very important to determine the presence of amorphous compound in the molecule, this amorphous compound quantity in the solid substance determine the rate of dissolution, storage stability and hygroscopic nature. The most common DSC measurement of amorphous structure is that of the glass transition (Tg). It is important to know the size of the transition in heat flow or heat capacity units and the temperature (Tg) at which it occurs. The size provides quantitative information on the amount of amorphous structure in the sample, while the temperature identifies the point where a large change in physical properties occurs. Crystalline materials often exist in multiple crystal forms (polymorphs) that have different physical, chemical and biological properties. The molecular structures were given in the Figure 7 to 12.

Molecular structure confirmations
The RLS 34, 36, 37, 38 and 41 molecules used for this study is confirmed further for its structure by analysis and interpreting NMR, Mass and IR spectra. These molecules has almost same range of exothermic temperature, where as different ranges of endothermic peak as per its crystalinity nature along with it moisture or its solvent combinations. These thermal property, heat capacity could vary based up on the solvent combinations used during the parent and derivative molecule synthesis. Because the internal / residual solvent amount trapped during the crystal formation of compound could changes the thermal properties.

Table 1: Comparison Table

<table>
<thead>
<tr>
<th>Sample</th>
<th>M. P (°C)</th>
<th>Heat (mJ)</th>
<th>Substituted Halide</th>
<th>Halide Substituted position</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLS-34</td>
<td>80.81</td>
<td>-894.10</td>
<td>Br</td>
<td>Ortho</td>
</tr>
<tr>
<td>RLS-36</td>
<td>125.97</td>
<td>-125.77</td>
<td>Br</td>
<td>Para</td>
</tr>
<tr>
<td>RLS-37</td>
<td>67.07</td>
<td>-115.51</td>
<td>I</td>
<td>Ortho</td>
</tr>
<tr>
<td>RLS-38</td>
<td>76.32</td>
<td>-311.10</td>
<td>F</td>
<td>Meta</td>
</tr>
<tr>
<td>RLS-41</td>
<td>125.25</td>
<td>-309.35</td>
<td>F</td>
<td>Ortho</td>
</tr>
<tr>
<td>RLS-01</td>
<td>144.7</td>
<td>-292.8</td>
<td>-</td>
<td>Parent</td>
</tr>
</tbody>
</table>

Figure 1: DSC of RLS-34
Figure 2: DSC of RLS-36

Figure 3: DSC of RLS-37

Figure 4: DSC of RLS-38
Figure 5: DSC of RLS-41

Figure 6: DSC of RLS-01

Figure 7: RLS-34 Molecule Structure

Figure 8: RLS-36 Molecule Structure
CONCLUSION

The ortho substituted iodo derivative (RLS-37) and para bromo substituted derivative (RLS-36) has less Heat capacity than the parent molecule Embelin (RLS-01). The Meta and ortho fluoro substituted derivatives (RLS-38 and RLS-41) are more are less equal heat capacity than the parent molecule Embelin. The only molecule ortho bromo derivative (RLS-34) has very high heat capacity than the parent molecule. This data interoperating that the bio availability of this derivative could be more than its parent molecule.

REFERENCES

Cite this article as:

Source of support: Nil, Conflict of interest: None Declared