EVALUATION OF PROTECTIVE ROLE OF QUERCETIN ON PACLITAXEL-INDUCED LIPID PEROXIDATION

Supratim Ray *
Department of Pharmaceutical Sciences, Assam University, Silchar, India

*Corresponding Author Email: supratimray_in@yahoo.co.in

Article Received on: 21/02/16 Revised on: 13/03/16 Approved for publication: 25/03/16

DOl: 10.7897/2230-8407.07547

ABSTRACT

The objective of the present study was to explain antiperoxidative potential of quercetin on paclitaxel-induced lipid peroxidation. Goat liver was used as lipid source. This in vitro work was carried out by measuring using malondialdehyde and 4-hydroxy-2-nonenal content as model markers. The findings suggest that paclitaxel could induce lipid peroxidation to a significant extent and it was also found that quercetin has the ability to suppress the paclitaxel-induced toxicity.

Keywords: Paclitaxel, quercetin, lipid peroxidation, malondialdehyde, 4-hydroxy-2-nonenal

INTRODUCTION

Lipid peroxidation is a free radical related process that may occur in the biological system under enzymatic control or non-enzymatically1-3. The cytotoxic end products of lipid peroxidation are mainly aldehydes as exemplified by malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE) etc. Paclitaxel is one of the popular drugs in breast cancers in women of developed and developing countries. However the drug produces several side effects due to production of free radicals in the body4. It is reported that paclitaxel in combination with antioxidant reduces the drug induced lipid peroxidation on. Quercetin is a member of flavonoids, exerts antioxidant potential and offers protection against the oxidative stress. Recent studies showed that quercetin prevents docetaxel induced testicular damage in rats5. Dietary antioxidants are gaining increasing importance day by day because of their health protective value, easy availability and biosafety. In view of the above findings and the ongoing search of the present author for antioxidant that may reduce drug induced lipid peroxidation6-10 the present work has been carried out in vitro to evaluate the antiperoxidative potential of quercetin on paclitaxel-induced lipid peroxidation.

MATERIALS AND METHODS

Thiobarbituric acid (TBA) and trichloroacetic acid (TCA) were purchased from Ranbaxy Fine Chemicals Ltd., New Delhi. 1,1,3,3-tetraethoxypropane was from Sigma chemicals Co. St. Louis, MO, USA. 2, 4-Dinitrophenylhydrazine (DNPH) was procured from SD Fine Chem. Ltd., Mumbai. The standard sample of 4-HNE was purchased from ICN Biomedicals Inc., Aurora, Ohio. Quercetin was procured from Himedia Bioscience, Mumbai. All other reagents were of analytical grade. Goat liver was used as the lipid source.

Preparation of tissue homogenate

Goat liver was collected from Silchar Municipal Corporation approved outlet. Goat liver was selected because of its easy availability and close similarity with human liver in its lipid profile11. Goat liver perfused with normal saline through hepatic portal vein was harvested and its lobes were briefly dried between filter papers to remove excess blood and thin cut with a heavy-duty blade. The small pieces were then transferred in a sterile vessel containing phosphate buffer (pH 7.4) solution. After draining the buffer solution as completely as possible, the liver was immediately grinded to make a tissue homogenate (1 g/ml) using freshly prepared phosphate buffer (pH 7.4). The homogenate was divided into four equal parts, which were then treated differently as mentioned below.

One portion of the homogenate was kept as control (C) while a second portion was treated with the paclitaxel (D) at a concentration of 0.143μM/g tissue homogenate. The third portion was treated with both paclitaxel at a concentration 0.143μM/g tissue homogenate and quercetin at a concentration of 0.1666 mg / g homogenate (DA) and the fourth portion was treated only with quercetin at a concentration of 0.1666 mg / g tissue homogenate (A). After paclitaxel and /or quercetin-treatment, the liver tissue homogenate samples were shaken for five hours and the malondialdehyde and 4-hydroxy-2-nonenal content of various portions were determined.

Estimation of malondialdehyde (MDA) level from tissue homogenate

The extent of lipid peroxidation was measured in terms of malondialdehyde (MDA) content using thiobarbituric acid (TBA) method12. The estimation was done at 5 hours of incubation and repeated in three animal sets. In each case three samples of 2.5 ml of incubation mixture were treated with 2.5 ml of 10% (w/v) trichloroacetic acid (TCA) and centrifuged at room temperature at 3000 rpm for 30 minutes to precipitate protein. Then 2.5 ml of the supernatant was treated with 5 ml of

...
0.002 (M) TBA solutions and then volume was made up to 10 ml with distilled water. The mixture was heated on a boiling water bath for 30 minutes. Then tubes were cooled to a room temperature and the absorbance was measured at 530 nm against a TBA blank (prepared from 5 ml of TBA solution and 5 ml of distilled water) using Shimadzu UV-1700 double beam spectrophotometer. The concentrations of MDA were determined from standard curve, which was constructed as follows. Different aliquots from standard 1, 1, 3, 3-tetrahydroxypropane (TEP) solution were taken in graduated stopped test tubes and volume of each solution was made up to 5 ml. To each solution, 5 ml of TBA solution was added and the mixture was heated in a steam bath for 30 minutes. The solutions were cooled to a room temperature and their absorbances were measured at 530 nm against TBA as blank. By plotting absorbances against concentrations a straight line was obtained. The best-fit equation is $A=0.007086M$, where $M=$ nanomoles of MDA, $A=$ absorbance, $r = 0.999$, SEE = 0.006.

Estimation of 4-hydroxy-2-nonenal (4-HNE) level in tissue homogenate

The estimation was done at 5 hours of incubation and repeated in three animal sets. In each case three samples of 2 ml of incubation mixture was treated with 1.5 ml of 10% (w/v) TCA solution then centrifuged at 3000 rpm for 30 min. 2 ml of the filtrate was treated with 1 ml of 2, 4-dinitrophenyl hydrazine (DNPH) (100 mg / 100 ml of 0.5 M HCl) and kept for 1 hour at room temperature. Each sample was extracted with 2 ml of hexane for three times. All extracts were collected in stopped test tubes. After that extract was evaporated to dryness under argon at 40°C and the residue was reconstituted in 1 ml of methanol. The absorbance was measured at 350 nm using the 0 µM standard as blank. The best-fit equation is: Nanomoles of 4-HNE = $(A_{350} - 0.005603185) / 0.003262215$, where $A_{350} =$ absorbance at 350nm, $r = 0.999$, SEM = 0.007.

Statistical Analysis

Analysis of variance (ANOVA) and multiple comparison analysis using least significant different procedure were also performed on the percent changes data of various groups such as paclitaxel-treated (D), paclitaxel and quercetin (DA) and only quercetin-treated (A) with respect to control group of corresponding time.

Table 1: ANOVA & Multiple comparison for changes of MDA and 4-HNE content

<table>
<thead>
<tr>
<th>Name of the antioxidant</th>
<th>Marker of lipid peroxidation</th>
<th>Analysis of variance and multiple comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercetin</td>
<td>MDA</td>
<td>$F_1=149389(d_f=(2,4)), F_2=0.10(d_f=(2,4)), Pooled variance (s^2=0.002), Critical difference (p=0.05) LSD=0.084, Ranked means** (D) (DA) (A)</td>
</tr>
<tr>
<td></td>
<td>4-HNE</td>
<td>$F_1=20579.9(d_f=(2,4)), F_2=0.25(d_f=(2,4)), Pooled variance (s^2=0.004), Critical difference (p=0.05) LSD=0.12, Ranked means** (D) (DA) (A)</td>
</tr>
</tbody>
</table>

Theoretical values of F: p=0.05 level $F_1=6.94 \ [d_f=(2,4)], F_2=6.94 \ [d_f=(2, 4)]$ F1 and F2 corresponding to variance ratio between groups and within groups respectively; D, DA & A indicate only paclitaxel-treated, paclitaxel & quercetin-treated and only quercetin-treated samples * Error mean square, # Critical difference according to least significant procedure (LSD) **Two means not included within same parenthesis are statistically significantly different at p=0.05 level.

Figure 1: Effects of quercetin paclitaxel-induced changes in MDA content (n=3); D, DA & A indicate only paclitaxel-treated, paclitaxel & quercetin-treated and only quercetin-treated samples
RESULTS & DISCUSSION

The percent changes in MDA and 4-HNE content of different samples at 5 hours of incubation were calculated with respect to the control of the corresponding time of incubation and was considered as indicator of the extent of lipid peroxidation.

From Figure 1 it was evident that tissue homogenates treated with paclitaxel showed an increase in MDA (12.29 %) content in samples with respect to control at 5 hours of incubation to a significant extent. The observations suggest that paclitaxel could significantly induce the lipid peroxidation process. MDA is a highly reactive three-carbon dialdehyde produced as a byproduct of polyunsaturated fatty acid peroxidation and arachidonic acid metabolism\(^1\). But the MDA (-4.26 %) content were significantly reduced in comparison to control and paclitaxel-treated group when tissue homogenates were treated with paclitaxel in combination with quercetin. Again the tissue homogenates were treated only with the quercetin and the MDA (6.34%) level were reduced in comparison to paclitaxel treated as well as control group. This decrease may be due to the free radical scavenging property of the quercetin.

It was also evident from Figure 2 that tissue homogenates treated with paclitaxel showed an increase in 4-HNE (6.54%) content in samples with respect to control to a significant extent. The observations suggest that paclitaxel could significantly induce the lipid peroxidation process. 4-HNE is formed due to lipid peroxidation occurring during episodes of oxidant stress, readily forms adducts with cellular proteins; these adducts can be assessed as a marker of oxidant stress in the form of lipid peroxidation\(^7\). Lipid peroxidation leads to the generation of a variety of cytotoxic products. Moreover it causes disruption of membrane structure and change in fluidity\(^8\). But the 4-HNE content was significantly reduced (-3.2%) in comparison to control and paclitaxel-treated group when tissue homogenates were treated with paclitaxel in combination with quercetin. Again the tissue homogenates was treated only with quercetin the 4-HNE level was reduced (-2.06%) in comparison to the control and the paclitaxel treated group. This decrease may be explained by the free radical scavenging property of the quercetin.

To compare means of more than two samples, multiple comparison analysis along with analysis of variance was performed on the percent changes data with respect to control of corresponding hours. It is seen that there is significant differences among various groups (F1) such as paclitaxel-treated, paclitaxel and quercetin-treated and only quercetin-treated. But within a particular group, differences (F2) are insignificant which shows that there is no statistical difference in animals in a particular group (Tables 1). The Tables also indicate that the level of MDA / 4-HNE in all three groups i.e. paclitaxel –treated, paclitaxel and quercetin-treated and only quercetin-treated groups are statistically significantly different from each other.

CONCLUSION

The findings of the work showed the lipid peroxidation induction potential of paclitaxel, which may be related to its toxic potential. The results also suggest the antiperoxidative effects of quercetin and demonstrate its potential to reduce paclitaxel induced toxic effects.

REFERENCES

Cite this article as:

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.