Research Article

DEVELOPMENT AND CHARACTERIZATION OF CO-SOLVENT BASED ANTI-GLAUCOMIC OPHTHALMIC VESICLES OF ACETAZOLAMIDE

Jindal Keshav *

University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Dist Mohali, Punjab, India

*Corresponding Author Email: keshav208@gmail.com

Article Received on: 23/06/16 Revised on: 22/07/16 Approved for publication: 01/08/16

DOI: 10.7897/2230-8407.07894

ABSTRACT

The purpose of the study was to formulate topically effective ophthalmic acetazolamide vesicular formulations. Ethanolic and ethereal injection methods were used for the preparation of bi-lamellar and multi-lamellar acetazolamide vesicles consisting of span-60, PEG-400 and PG (co-solvents and penetration enhancers) with or without tween-80 (an edge activator) and non-ionic surfactant. Reverse phase evaporation (REV) method was used to prepare niosomes (control) and 1% w/v acetazolamide suspension for comparison purpose to evaluate ex-vivo corneal permeability performance. The prepared vesicles were evaluated for their abundance, size, shape, lamellarity and number of vesicles/mm² by optical microscopy, entrapment efficiency, drug content, zeta potential, pH, DSC studies, ex-vivo corneal permeability studies, sterilization studies, in-vivo studies, stability studies and safety studies. Bi-lamellar and multi-lamellar vesicles entrapped greater amounts of drug than uni-lamellar REVs niosomes. Physical stability study indicated that approximately 93% and 94% of acetazolamide was retained in selected vesicular formulations up to a period of 4 months at 4°C. The intraocular pressure (IOP) lowering activity of selected acetazolamide vesicular formulations was determined and compared with Dorzox®, a marketed formulation. Acetazolamide vesicles revealed more prolonged effect than marketed formulation. The selected vesicular formulations F1 and F2 exhibited greater lowering in IOP and a more prolonged effect than the other formulations prepared by ethanolic injection and ethereal injection methods without co-solvents. The selected vesicular formulation F1 composed of PEG 400PG (1:7) ratio and formulation F2 composed of PEG-400 without PG showed the maximal response, which reached a value of –3.3±0.4 mmHg after 1 hour of topical administration.

Keywords: Ophthalmic vesicles, Acetazolamide, Niosomes

INTRODUCTION

Drug delivery in ocular therapeutics is a challenging problem and is a subject of interest to scientists working in the multidisciplinary areas pertaining to the eye. Current trends in ocular therapeutics and drug delivery suggest that the existing dosage forms will be replaced by novel drug delivery systems that offer improved biopharmaceutical properties.

Acetazolamide (the most effective carbonic anhydrase inhibitor, CAI) is used orally in large doses for the reduction of intraocular pressure (IOP) in patients suffering from glaucoma, the third most prevalent cause of visual impairment and blindness in the United States, after cataracts and macular degeneration and in the promotion of diuresis in instances of abnormally large fluid secretion. This treatment leads to unpleasant systemic side effects such as central nervous system (CNS) depression, renal failure, diuresis, vomiting, anorexia, and metabolic acidosis. So, its oral use has become unpopular and several scientists have sought to replace oral CAIs with topical CAIs to abolish systemic side effects.

The 2 major problems that hinder the topical effectiveness of acetazolamide are its poor aqueous solubility (0.7 mg/mL) and low permeability coefficient of 4.1 × 10⁻⁶ cm/s. Topical formulations of acetazolamide solution (in the form of sodium salt) were initially unsuccessful because of its limited ocular penetration, which caused an insufficient amount of the drug to reach the ciliary body. Other significant attempts have been made to formulate effective acetazolamide topical preparations (eg. contact lenses containing acetazolamide; topically active surfactant gel preparation of acetazolamide; aqueous acetazolamide solution using 2-hydroxypropyl-β-cyclodextrin; polymeric suspensions of acetazolamide containing viscolyzers and penetration enhancers. Recently our research team Kaur and Smitha successfully prepared topically effective formulations of acetazolamide using cyclodextrins in combination with bioadhesive polymers, penetration enhancers, and co-solvents.

The various drug delivery systems mentioned above offer numerous advantages over conventional drug therapy, yet they are not devoid of pitfalls including poor patient compliance and difficulty of insertion, as in contact lenses, and tissue irritation, as well as damage and toxicological complications caused by penetration enhancers. In order to overcome these problems, the researchers conceived the concept of vesicular drug delivery systems for ocular therapy.

The objective of the present study was to formulate topical acetazolamide vesicular formulations by ethanolic injection and ethereal injection methods, niosomes by reverse-phase evaporation (REVs) method (NS control) and 1% w/v acetazolamide suspension for the purpose of comparison. A comparison study was performed between REV-NIO, ACZ-SUS and vesicular formulations to evaluate the ex-vivo corneal permeability performance. The factors influencing the encapsulation of the prepared vesicles regarding physical morphology, particle size, entrapment efficiency, drug content, pH, zeta potential, DSC, ex-vivo corneal permeability, sterilization of vesicles and safety studies were performed. Stability study was performed to investigate the leak out of the...
drug from vesicles during storage. The intra-ocular lowering activity of selected acetazolamide vesicular formulations was evaluated.

MATERIALS AND METHODS

Acetazolamide (ACZ; Gift sample from F.D.C. Limited, Mumbai.); Acetone (Sisco Research Laboratories Pvt. Ltd.); Cholesterol (Hi-media Pvt. Ltd.); Chloroform (Merck Specialities Pvt. Ltd.); Diethyl ether (Thermo Fisher Scientific India Pvt. Ltd.); Dorzox® (Cipla Pvt. Ltd.); Ethanol (Changshu Yangyuan Chemical China); Glutathione bicarbonate ringer (GBR); Glutathione, oxidized (Hi-media Pvt. Ltd.); Iso-propyl alcohol (Merck Specialities Pvt Ltd.); Methanol (Thermo Fisher Scientific India Pvt. Ltd.); Polyethylene glycol-400 (Loba Chemie Pvt. Ltd.); Propylene glycol (Loba Chemie Pvt. Ltd.); Span-60 (Central Drug House Pvt. Ltd.); Triple distilled water containing ACZ 1% w/v; 1% Tween-80 (Central Drug House Pvt. Ltd.); Tween-80 (Central Drug House Pvt. Ltd.); Merck® Ethanol (60°C); Ethanol (80°C); Isopropyl alcohol (Changshu); Methanol (Thermo Ficher Scientific GBR); Glutathione, oxidized (Hi-media Pvt. Ltd.); Propylene glycol (Loba Chemie Pvt. Ltd.); Span-60 (Central Drug House Pvt. Ltd.); Triple distilled water (Millipore); Twee

Optimization of Addition of Co-solvents

The amount(s) of co-solvent(s) added in the final formulations were decided after carrying out the preliminary optimization. Amounts were based upon the solubility of drug in the respective co-solvents. Various batches of vesicles were prepared and were then evaluated on the basis of % drug entrapped. The formula showing the best % entrapment was selected as the final formulation. A similar approach was applied to the combination of co-solvents. Range of combinations (5-33%) was selected and the formulations were evaluated for percent entrapment (Table 2). Concept of combination of co-solvent was applied keeping in mind the additive/synergistic effects that we may obtain.

Preparation of Niosomal Formulation (control) Reverse Phase Evaporation (REV) Method

Span 60 and cholesterol in a weight ratio of 2:1(a total of 150 mg) were dissolved in a mixture (12 ml) of ether and chloroform (2:1). Aqueous phase (containing suitable quantities of acetone and distilled water along with ACZ 1.0 w/v) was added such that the organic to aqueous phase ratio was 3:1. The mixture was then sonicated for 5 minutes using probe sonicator. A stable emulsion so formed was dried down in a rotary evaporator at 60°C till a semi solid gel like structure was formed. Gel was then shaken vigorously on the vortex mixer and the resultant viscous dispersion was diluted suitably with distilled water to make up the volume to 4 ml (volume of aqueous phase used initially). Un-entrapped drug was not removed and hence the formulation contained 10 mg/ml of ACZ. The preparation was similar to one, reported by us, to be a successful carrier system for acetazolamide except that it contained 1% w/v ACZ instead of 0.5% w/v. This formulation was taken as a control for comparing the presently prepared vesicular system.

Preparation of Co-solvent Based Vesicles

Ethanol Injection Method

Span-60 in a weight of 80 mg was dissolved in 10 ml ethanol. Aqueous phase (containing suitable quantities of PEG-400/PG along with ACZ 1% w/v or Tween-80 20 mg and ACZ 1% w/v) was prepared. The aqueous phase was maintained at 60°C and was magnetically stirred. Organic phase was slowly injected into preheated aqueous phase maintained at 60°C, using a 16 gauge needle (Figure 1).

Ether Injection Method

Span-60 in a weight of 80 mg was dissolved in 10 ml of ether. Aqueous phase (containing edge activator i.e. 20 mg Tween-80 along with ACZ 1% w/v) was prepared. The aqueous phase was maintained at 60°C at magnetic stirrer. Organic phase was slowly injected in to a preheated aqueous phase maintained at 60°C, using a 16 gauge needle.

CHARACTERIZATION OF VESICLES

Preliminary Studies

Vesicles were evaluated for shape, size, lamellarity, and abundance, immediately after preparation and at one month period from the time of preparation.
Morphology and Structure of Vesicles
The morphological characters (viz. shape uniformity and lamellarity) of prepared vesicles were monitored employing microscopy (eclipse i90, Nikon).

Number of Vesicles per Cubic Millimeter
Vesicles were suitably diluted with water, and the number of vesicles per cubic mm was counted by microscopy using haemocytometer. The vesicles in 80 small squares were counted and no. of vesicles/mm3 was calculated using the following formulaa.

Total number of vesicles / cubic mm = Total number of vesicle counted \times Dilution factor \times 4000 / Total number of squares counted

Entrapment Efficiency of the Vesicles
The entrapment efficiency of the vesicles was analyzed by dialysis method using cellophane membrane. 1 ml of vesicular dispersion was poured in dialysis bag in a beaker containing 100ml methanol as a sink media, for 45 min. and the sample was analyzed spectrophotometrically at wavelength of 265 nm (amount of free drug was present in sink media). Separately dialysis bag was ruptured and the amount of the entrapped drug was determined experimentally by disrupting the vesicles using isopropyl-alcohol (IPA) and analyzing the samples spectrophotometrically.

Percentage entrapment = Entrapped drug (mg) \times 100 / Total drug added (mg)

Mass balance equation was confirmed after obtaining the values for entrapped (vesicles in dialysis bag) and un-entrapped ACZ (drug in methanol, the sink media).

Drug Content
IPA was chosen as a suitable solvent for disrupting the prepared vesicles. 1 ml of the aqueous dispersion was disrupted using sufficient quantity of IPA and the absorbance was recorded at 265 nm.

Vesicle Shape and Type
Microscopy
Selected vesicles were observed under optical microscope, (Nikon, eclipse i90; magnification 400X) a thin layer of diluted vesicular dispersion was spread over the glass slide covered with a cover slip, and observed optically for structural attributes such as lamellarity, uniformity of size and shape.

Vesicle Size and Size Distribution
The size and size distribution of vesicles was determined by dynamic light scattering method (DLS), using a computerized inspection system (Malvern Zeta master, ZEM 5002, Malvern, U.K.).

Zeta Potential
Zeta potential of the vesicular dispersions was measured using Malvern’s zetasizer. The measurements were done at 25°C and the electric field strength was around 23.2 V/cm. The zetasizer measures the zeta potential based on the Smoluchowski equation.

\[\zeta = \frac{U_e \eta}{\varepsilon} \]

Where ζ is zeta potential, U_e is electrophoretic mobility, η is viscosity of the medium and ε is dielectric constant.

pH of the Formulations
pH of the formulations was measured using deluxe pH meter 101E, at 25°C.

Differential Scanning Calorimetry (DSC)
For thermal analysis, sample of the pure drug, all the excipients and vesicles were scanned using DSC and the thermo grams so generated were observed /evaluated for any significant shift or disappearance or appearance of new peaks.

Differential Scanning Calorimeter (DSC) was used to assess any interactions between the drug and the excipients added in the formulation. Samples were weighed in a hermetic aluminium pan and heated from 25-300°C at a rate of 10°C/min.

Ex-vivo corneal permeability studies
Influence of the various components of the formulations on the ex vivo permeability of acetazolamide through pig cornea was investigated using an in-house built glass diffusion cell. GBR was used as the diffusion medium considering that it acts as simulated tear fluid (STF). This solution is reported to preserve the integrity of the excised cornea for up to 6 hrs16. It is prepared by mixing equal parts of solutions A & B as given below just prior to use.

Part A
- Sodium chloride - 12.4 g/L
- Potassium chloride - 0.72 g/L
- Sodium dehydrogenate phosphate monohydrate - 0.21 g/L
- Sodium bicarbonate - 4.91 g/L

Part B
- Calcium chloride dehydrate - 0.23 g/L
- Magnesium chloride hex hydrate - 0.32g/L
- Glucose - 1.80 g/L
- Oxidized glutathione - 0.18 g/L

Solutions were stored in refrigerator and used within 3 weeks of preparation. The final solution was equilibrated at 35 ± 0.5°C, and the pH of the solution was adjusted between 7.2-7.4.

Preparation of Cornea
Enucleated whole bulbus of pigs were obtained from a local slaughter house. For preparation, the bulbus was always placed with the corneal side facing upwards so as to avoid the contamination of epithelial surface or physical trauma to the tissue. Starting at a distance of approximately 2 mm from the corneal rim, the sclera was incised until the vitreous body was reached. The cornea was incised circularly at that distance. The whole interior part of the eye was lifted, lens and iris still attached to the corneal part. This was important in order to avoid corneal wrinkling. The iris/ciliary body and lens were carefully removed, using forceps, taking care that the cornea remained well shaped (maintained its curvature). The later was washed in glutathione bicarbonate-ringer solution (simulated tear fluid; STF) before mounting it on diffusion cell assembly. To ensure that the cornea remains in its place, the rim of the donor compartment was lightly coated with elfy (Prime Products, Delhi) before mounting the cornea. Then the receptor compartment was placed over it and two compartments were fixed together using hooks (on the assembly) and rubber bands.
Method: For the in vitro corneal permeability studies, membrane diffusion technique was used. Studies were conducted within a jacketed cell, maintained at a constant temperature (37 ± 0.2°C), under mixing conditions using a magnetic stirrer. The cell used was a two-limbed reservoir (Figure 2); on one limb of which cornea was mounted and the other limb was used as the sampling port (volume =19 ml). The preparation (0.2ml) to be studied was placed on the cornea. The cornea was mounted within half an hour of sacrifice of the animals. Diffusion medium used was freshly prepared GBR solution equilibrated at 37 ± 0.2°C, pH 7.4. Aliquots of the medium were withdrawn after a fixed time interval from the sampling port and were replaced with equal quantity of fresh GBR to maintain a constant volume. Sink conditions were maintained throughout the study. Samples were analyzed spectrophotometrically at a 265 nm λmax.

The apparent corneal permeability coefficient \(P_{app} \) of different formulations was determined according to the following equation:

\[
P_{app} = \frac{\Delta Q}{\Delta t \cdot 60 \cdot A \cdot C_0} \text{ (Cms}^{-1})
\]

Where \(\frac{\Delta Q}{\Delta t} \) is the steady state slope of the linear portion of the plots of the amount of drug in the receiving chamber (Q) vs. time (t). A is the exposed corneal surface area (1.327 cm²), Co, the initial concentration of drug in the donor cell and 60 represents the conversion of minutes to seconds.

Pharmacodynamic Studies

Animals

Adult male rabbit weighing 1.0-1.5 kg were used for the studies. The rabbits were provided with food and water ad libitum in a temperature-controlled room (18-24°C). They were exposed to the normal (ambient) light and dark cycles. All rabbits used in these experiments were normotensive.

Method

Intraocular pressure (IOP) was measured using Reichert’s PT100 pneumatonometer. All IOP measurements were carried out by the same operator using the same pneumatonometer. IOP was measured three times at each interval and the means taken. The animals used, were accustomed, to the experimental procedure. The only restraint was the hand of the investigator lightly packed on the back and shoulders of the rabbit.

Formulations were instilled topically in to the lower quadrant of the eye and the eye was manually blinked three times, one eye received 30 µl of the formulation, and the contralateral eye served as the control. The animals used, were accustomed, to the experimental procedure. Each animal was given a washout of three days after every treatment.

Change in IOP at any time t (ΔIOP) is expressed as:

\[
\Delta IOP = IOP \text{ at time } t - IOP \text{ at 0 time}
\]

ΔIOP is reported as the mean (±SD) of the values from three rabbits.

Stability Studies

The formulations were evaluated for stability in terms of their leakiness, total drug content, aggregation behavior, and abundance. The formulations were kept in 30 ml stoppered glass vials and stored under two different conditions (refrigerator i.e. 2-8°C and ambient room temperature i.e. 25°C ± 2.0). Aliquots samples from the formulations were withdrawn at definite time intervals (0, 1, 2, 3 and 4 months) and analyzed.
spectrophotometrically for the extent of entrapment at 265 nm. Reduction in the percent entrapment with respect to the initial sample (0 month; 100% entrapment) is reported for the developed vesicles. The samples were also evaluated microscopically to observe the extent of aggregation and in terms of their abundance using haemocytometer.

In-vivo Safety Studies

Since presently reported vesicular systems developed and reported by us was a novel system so it was necessary to evaluate them for safety. We employed in vivo dermal/ocular irritation (OECD guidelines) study in rabbits. Details of these tests are given below.

Acute Dermal Irritation/Corrosion Test as per OECD Guideline 404

According to OECD guideline 405, before considering in vivo eye irritation/corrosion test, preferably a study of the in vivo dermal effects of the substance should be conducted and evaluated in accordance with OECD Testing Guideline 404. According to these guidelines a special attention was given to possible improvements in relation to animal welfare concerns and to the evaluation of all existing information on the test substance in order to avoid unnecessary testing in laboratory animals.

Principle of the in vivo test

The substance to be tested was applied in a single dose to the skin of an experimental animal; untreated skin areas of the test animal serve as the control. The degree of irritation/corrosion was read and scored at specified intervals.

Selection of animal species

The albino rabbits were the preferable laboratory animal and healthy young male rabbits (6 month; average weight 1.4-1.7 kg) were used.

Preparation of the animals

Approximately 24 h before the test, fur of the animals was removed using hair removing cream from the dorsal area of the trunk of the animals. Care was taken to avoid abrading the skin, and only animals with healthy, intact skin were used.

Test Procedure

Application of the test substance

The test substance (0.5 ml of vesicular dispersion) was applied to a gauze patch (approximately 6 cm²) which was then applied to the skin with non-irritating tape for a period of 4 h. The test patch was attached to the skin in such a manner that there was good contact and uniform distribution of the substance on the skin. The care was taken that the access of the animal to the patch and/or its ingestion or inhalation was not possible.

A small shaved skin area adjacent to test area served as control. At the end of the exposure period, gauze patch was removed, and examined after 1h of patch removal. Initial test (in vivo dermal irritation/corrosion test using one animal) The in vivo test was performed initially using one animal and the response was graded.

Confirmatory test (in vivo dermal irritation test with additional animals) When the initial test on one animal showed the absence of irritation/corrosion or negative response was confirmed using two additional animals, each with one patch, for an exposure period of four hours.

Clinical observations and grading of skin reactions

All animals were examined for signs of erythema and edema and the responses scored at 60 minutes, and then at 24, 48 and 72 hours after the patch were removed. For the initial test in one animal, the test site was also examined immediately after the patch was removed.

RESULTS AND DISCUSSION

Characterization of vesicles

Preliminary Studies

The developed vesicles (F1-F4; F6 and F7) were compared morphologically with F5 (NS control) in terms of size, shape, abundance and lamellae 1 month after preparation, to evaluate stability on keeping, as shown in table 1. None of the selected formulations showed any aggregation upon storage.

Table 1: Evaluation of Morphological Characteristics of the Vesicles Prepared With Span-60 in Combination With Cholesterol (for Niosomal preparation) or Edge Activator

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Abundance</th>
<th>Size</th>
<th>Shape</th>
<th>Lamellar Type</th>
<th>No. of vesicles/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>very abundant</td>
<td>Small</td>
<td>Round, regular</td>
<td>bilamellar, multi-lamellar</td>
<td>40,500</td>
</tr>
<tr>
<td>F2</td>
<td>very abundant</td>
<td>Small</td>
<td>round, regular</td>
<td>bilamellar, multi-lamellar</td>
<td>81,000</td>
</tr>
<tr>
<td>F3</td>
<td>very abundant</td>
<td>Large</td>
<td>round, irregular</td>
<td>bilamellar, multi-lamellar</td>
<td>75,500</td>
</tr>
<tr>
<td>F4</td>
<td>very abundant</td>
<td>Large</td>
<td>round, irregular</td>
<td>bilamellar, multi-lamellar</td>
<td>74,500</td>
</tr>
<tr>
<td>F5</td>
<td>Abundant</td>
<td>Small</td>
<td>round, irregular</td>
<td>Uni-lamellar</td>
<td>39,500</td>
</tr>
<tr>
<td>F6</td>
<td>very abundant</td>
<td>small</td>
<td>round, regular</td>
<td>Bilamellar</td>
<td>66,500</td>
</tr>
<tr>
<td>F7</td>
<td>very abundant</td>
<td>Medium</td>
<td>round, regular</td>
<td>Bilamellar</td>
<td>68,100</td>
</tr>
</tbody>
</table>

Abundant 30,000-40,000 vesicles/mm²; Very abundant >40,000 vesicles/mm².

Entrapment efficiency of developed formulations

Percent entrapment of various vesicular formulations is listed in table 2 and their particle size distribution is shown in Figure 3. Results indicate that the formulations prepared using PEG-400 alone or in combination with PG had significantly better entrapment efficiencies. It may be noted from the results that formulation-1 (F1) and formulation-2 (F2) showed a significantly higher entrapment of almost 67 and 69% which was almost 13-15% more than the other similarly prepared formulations (F3, F4) and was more than 2.5 times that of NS control (F5). Further it was observed that preparation of vesicles (using tween-80 as EA; F6) improved the entrapment by almost 2 times in comparison to NS control. However use of co-solvent EAs has significantly better influence which was compromised upon incorporation of tween-80 (F3; F4).
In general, entrapment efficiency of vesicles prepared by ethanol injection was higher as compared to those prepared by ether injection method and reverse phase evaporation method.

Drug Content

Actual amount added for all practical purposes was 10.0 mg/ml (100%) and the drug content of the developed formulations was not found to be significantly different from added amount except F5, as shown in table 2. This is expected considering that method (REV) of preparation of NS (F5) may result in significant drug losses.

Table 2: Entrapment efficiency and Drug content of various formulations

<table>
<thead>
<tr>
<th>Formulations</th>
<th>%ENT±SD a</th>
<th>%T.D.C±SD b</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>64.0±3.05</td>
<td>97.17±1.58</td>
</tr>
<tr>
<td>F2</td>
<td>66.5±2.9</td>
<td>96.4±1.86</td>
</tr>
<tr>
<td>F3</td>
<td>51.8±2.7</td>
<td>97.13±1.02</td>
</tr>
<tr>
<td>F4</td>
<td>48.2±4.1</td>
<td>93.92±5.33</td>
</tr>
<tr>
<td>F5</td>
<td>26.01±2.19</td>
<td>81.42±4.81</td>
</tr>
<tr>
<td>F6</td>
<td>51.83±2.6</td>
<td>96.78±2.23</td>
</tr>
<tr>
<td>F7 (Ether inj.)</td>
<td>52.85±2.9</td>
<td>97.24±2.57</td>
</tr>
</tbody>
</table>

a- ENT= Entrapment efficiency; All values are significantly different (p<0.001) from one another except those marked similarly.
b- All values are not significantly different from 100% value i.e. 10 mg/ml (p>0.05) except * (p<0.001).

Vesicle size and Size Distribution

Particle size is an important parameter in in-process control and particularly in quality assurance, because the physical stability of vesicular dispersions depend on particle size and particle size distribution. Particle size of the ophthalmic preparation should be less than 10 µm in order to avoid irritation to the eyes. Also with smaller particle size easy penetration through the cornea is observed. The smaller ganciclovir liposomes (200 nm) probably could penetrate the cornea more easily than the larger (1000 nm) acyclovir liposomes. Average particle size of vesicles developed by us as shown in table 3 fall in nano range and hence are not only appropriate for ocular use, but are also expected to cross the corneal barrier and reach up to the internal eye tissues. The particle size of the developed formulation was measured with particle size analyzer (Malvern™) zetasizer. The particle size of the developed vesicles was found to lie in a narrow range, with formulation F1 and F2 having a small average particle size of 250 nm and 162 nm respectively. (especially the developed formulation F2 showed an average size of 162 nm with 10% vesicles smaller than 80 nm while 90% of the vesicles were equal to 490 nm). While the other two vesicular formulations viz. F3 and F4 showed a very large particle size (16 µm and 15 µm), which was unsuitable for ocular use; so for all subsequent studies F3 and F4 were not included. Presence of Tween 80 in the formulations seems to contribute a large particle size. Since PEG 400 and Tween 80 have hydrophilic nature (HLB 11.6 and 16 respectively); this may be responsible for an increase in particle size. However, the ether injection method resulted in a fairly particle size even with Tween 80. Even the niosomal formulation, F5 showed a large particle size of 13.4 µm and was used as an internal control for the presently developed vesicular formulation of ACZ.

Figure 3: Particle size of formulations F1, F2, F3 and F4.

Vesicle Shape and Type

Optical Microscopy

Formulations F1 and F2 were examined microscopically (optical microscope, Nikon eclipsed i90; magnification 400X). Optical inspection indicated the vesicles to be small in size, round in shape, bilamellar and multilamellae (Figure 4) with no aggregation or irregularities being observed in the systems. The particles were uniformly distributed as shown in Figure 4.
Zeta Potential

In dispersion, the Brownian motion results in frequent collision between the particles. Such interactions are mainly responsible for stability of dispersion system. When attraction predominates, the particles adhere after collision and tend to aggregate. When repulsion predominates, the particles rebound after collision and remain individually dispersed. As we know that, zeta potential is defined as the difference in potential between the surface of tightly bound layer and electroneutral region of solution11, thus, a high (+ve) or low (-ve) zeta potential value signifies greater interparticle distance or in other words repulsion between vesicles and hence a good stability of the system.

Zeta potential of the formulations F1-F4 was measured employing Malvern’s zetasizer at 25 \textdegree C. Observed zeta-potential of the optimized formulations is shown in Table 3. The negative value of zeta-potential obtained for formulations indicates a low scope of coalescence of vesicular system and sufficient stability of the nanodispersion.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Particle size ± sd a</th>
<th>%Transmitance</th>
<th>Zeta potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>250±20.5 nmc</td>
<td>39.7</td>
<td>-4.36</td>
</tr>
<tr>
<td>F2</td>
<td>162±11.1 nmc</td>
<td>25.2</td>
<td>-8.84</td>
</tr>
<tr>
<td>F3</td>
<td>16.8±5.9 \mu m</td>
<td>35.2</td>
<td>-2.74</td>
</tr>
<tr>
<td>F4</td>
<td>15.4±2.7 \mu m</td>
<td>37.1</td>
<td>-4.55</td>
</tr>
<tr>
<td>F5</td>
<td>13.4±3.97 \mu m</td>
<td>36.8</td>
<td>-3.38</td>
</tr>
<tr>
<td>F6</td>
<td>6.0±2.8 \mu mc</td>
<td>35.7</td>
<td>-3.89</td>
</tr>
<tr>
<td>F7 (ether inj.)</td>
<td>535±23.1 nmc</td>
<td>37.0</td>
<td>-3.10</td>
</tr>
</tbody>
</table>

a All values are significantly different (p<0.001) from one another except for those marked similarly.

pH of the formulations

Human tears normally have a pH of about 7.2 with a good buffering capacity. Despite the sensitivity of cornea, un-buffered solutions with pH value between 3.5 and 10.5 are usually tolerated, with little discomfort in the eye. Outside this pH range, irritation of the eye usually occurs accompanied with increased lacrimation, particularly so with alkaline solutions. It is expected that the unbuffered solutions will be buffered to the physiological pH, within minutes of instillation, by the lacrimal fluid. Moreover, since the volume of instilled drop is very small (0.03 ml), a small amount of tears can buffer the instilled solution. At the same time, stability of the drug is an important consideration and the pH of the formulations can be compromised keeping the stability of the drug into consideration9. The pH of maximum stability of acetazolamide is reported to be 4.53.

Maintaining the pH between 4 to 6, also ensures that ACZ will be present in an unionized form which in addition to better stability would also show a better permeation through biological membranes. pH of the developed dispersive systems is shown below in table 4.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.31</td>
<td>5.72</td>
<td>6.16</td>
<td>5.90</td>
<td>5.02</td>
<td>5.7</td>
<td>5.5</td>
<td>5.06</td>
</tr>
</tbody>
</table>

Determination of Drug-Excipient Interactions Using DSC

Successful formulation of a stable and effective dosage form depends on the careful selection of excipients. The latter can facilitate administration, promote a consistent release and bioavailability of the drug and protect it from degradation. Drug-excipient compatibility/interaction studies are thereby conducted towards the final stages of preformulation to eliminate “surprise” stability or compatibility problems. Hence samples of pure acetazolamide, all excipients (span 60, Polyethylene glycol 400, Propylene glycol) and their physical mixtures were scanned using differential scanning calorimeter (DSC) and thermograms so generated were analyzed for any significant shift in the peak, disappearance of a peak, or appearance of any new peak(s), with respect to the vesicular formulations.

In case of acetazolamide the drug peak was observed at 261.57\textdegree C corresponding to the melting point of acetazolamide (263\textdegree C), which is accompanied by decomposition as indicated.
by an exothermic peak at 259.26°C. Further, the endothermic peak of propylene glycol (Figure 5 b) was observed at 153.90°C and endothermic peak of PEG-400 (Figure 5 c) was observed at 160.99°C. As shown below in Table 5.
Figure 5: DSC of Acetazolamide (a); Propylene glycol (b); Polyethylene glycol 400 (c); B-Unloaded (Blank formulation F1) (d); C-Unloaded (Blank formulation F2) (e); B-Loaded (formulation F1) (f); C-Loaded (formulation F2) (g); B-Unloaded+drug (h); C-Unloaded+drug (i); Physical mixture B (components of form. F1) (j); Physical mixture C (components of formulation F2) (k); Span 60 vesicles (l); Polyethylene glycol 400+Propylene glycol (m).

Figure 5d and 5e indicated broadening of peak thus signifying the development of vesicles. Furthermore the peak shifted to a much lower transition temperature, (with respect to the constituents i.e. Span 60, PEG 400 or PG) indirectly indicating the fluid nature of vesicles. The drug loaded vesicles (Figure 5f and 5g) did not show any peak corresponding to that of ACZ indicating that either the drug is completely incorporated into the respective vesicles or probably the free drug is in a solubilised form due to presence of co-solvents. This was indicated by the fact that the DSC of unloaded vesicles along with ACZ, also showed an absence of the drug peak, both in Figure 5 h and 5 i which may be due to the interaction (i.e. solubilisation) of drug with free propylene glycol (PG) and polyethylene glycol 400 (PEG 400). Similar results were also seen in DSC of physical mixtures (Figure 5j and 5k). The peaks observed by a combination of propylene glycol (PG) and polyethylene glycol 400 (PEG 400) (Figure 5 m) were found to disappear from blank vesicles (Figure 5d and 5e) indicating the incorporation of PEG 400 and propylene glycol (PG) into the vesicles.
Table 5: Endothermic Peaks Shown by Drug, Co-solvents, Various Vesicles and Their Different Combinations

<table>
<thead>
<tr>
<th>Drug/co-solvents/formulations</th>
<th>Peak (Endothermic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetazolamide</td>
<td>261.57°C</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>153.90°C</td>
</tr>
<tr>
<td>Polyethylene glycol 400</td>
<td>160.90°C</td>
</tr>
<tr>
<td>Propylene glycol + Polyethylene glycol 400</td>
<td>140.39°C, 155.95°C</td>
</tr>
<tr>
<td>F1 (Blank)-Fig 12 d</td>
<td>77.31°C, 114.53°C</td>
</tr>
<tr>
<td>F2 (Blank)-Fig 12 e</td>
<td>85.52°C, 97.32°C</td>
</tr>
<tr>
<td>F1 (Loaded)</td>
<td>94.77°C, 104.37°C</td>
</tr>
<tr>
<td>F2 (Loaded)</td>
<td>94.38%, 105.68%</td>
</tr>
<tr>
<td>F1 (Blank + Drug)</td>
<td>87.77°C, 99.40°C</td>
</tr>
<tr>
<td>F2 (Blank + Drug)</td>
<td>36.52°C, 55.77°C</td>
</tr>
<tr>
<td>F1 (Physical mixture)</td>
<td>59.82°C, 103.77°C</td>
</tr>
<tr>
<td>F2 (Physical mixture)</td>
<td>52.13°C, 76.45°C</td>
</tr>
<tr>
<td>Span 60 (Blank vesicles)</td>
<td>92.89°C</td>
</tr>
</tbody>
</table>

Ex-vivo Corneal Permeability Studies

Ex-vivo corneal permeability data of various formulations is summarized in Table 6. Linear permeability plot with correlation coefficient (r²) in the range 0.969-0.996 were obtained for log % permeated vs time (Figure 6) in case of developed formulations F1, F5, F8 (suspension). An aqueous suspension of ACZ in 1% w/v Tween 80 (F8) was taken as control in this study. Results indicate a considerable improvement in effect when free drug is incorporated into vesicles. This indicates first order release kinetics of developed systems. It may however, be noted that data also fitted the zero order kinetics i.e. % permeated vs time plots showed r² 0.980-0.999; thus indicating a controlled release pattern. Table 7 shows the total amount permeated, % permeation, steady state flux and apparent permeability coefficient (P_app) of all the formulations. A one way ANOVA followed by Tukey’s test was applied on the data. Broadly speaking formulations F1 and F2 were significantly better than all other formulations in terms of % amount permeated at each time interval. F1 and F2 show an asymptotic from 3h onwards as shown by absence of any significant difference between amount released at subsequent times; again indicating a prolonged effect.

F1 and F2 also showed significantly better (more than 2 times) results (p<0.001) in terms of % amount permeated, steady state flux and the apparent permeability coefficient of ACZ when entrapped within these vesicles. However, there was no significant difference between F1 and F2 in terms these parameters. (Table 7). The apparent permeability coefficient of ACZ from the suspension form was significantly less than F1 and F2 (p<0.001) again confirming their efficiency.

<table>
<thead>
<tr>
<th>Form</th>
<th>0.25h</th>
<th>0.5h</th>
<th>1h</th>
<th>1.5h</th>
<th>2h</th>
<th>2.5h</th>
<th>3h</th>
<th>4h</th>
<th>5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>13.0±0.9*</td>
<td>16.6±1.7</td>
<td>20.4±0.8</td>
<td>24.9±1.4</td>
<td>29.6±1.2</td>
<td>34.9±3.9</td>
<td>40.0±4.6</td>
<td>44.8±3.3</td>
<td>51.5±3.6</td>
</tr>
<tr>
<td>F2</td>
<td>13.1±0.1</td>
<td>17.4±0.6</td>
<td>23.0±4.5</td>
<td>27.4±3.4</td>
<td>33.0±3.9</td>
<td>35.9±4.8</td>
<td>40.0±4.3</td>
<td>47.1±1.4</td>
<td>52.8±3.2</td>
</tr>
<tr>
<td>F5</td>
<td>6.7±0.3</td>
<td>7.6±0.4</td>
<td>10.7±0.3</td>
<td>14.2±0.4</td>
<td>17.4±0.4</td>
<td>20.4±0.7</td>
<td>24.1±1.0</td>
<td>27.2±2.2</td>
<td>30.8±0.6</td>
</tr>
<tr>
<td>F6</td>
<td>7.3±0.4</td>
<td>8.9±0.2</td>
<td>10.9±0.4</td>
<td>13.4±0.3</td>
<td>15.9±0.6</td>
<td>18.1±0.8</td>
<td>21.0±0.7</td>
<td>25.9±0.6</td>
<td>31.1±0.7</td>
</tr>
<tr>
<td>F7</td>
<td>5.6±0.4</td>
<td>7.0±0.3</td>
<td>9.1±0.1</td>
<td>10.9±0.3</td>
<td>12.1±0.4</td>
<td>14.5±1.1</td>
<td>17.6±0.6</td>
<td>22.0±1.1</td>
<td>27.3±0.5</td>
</tr>
<tr>
<td>F8</td>
<td>3.2±0.1</td>
<td>4.5±0.2</td>
<td>6.3±0.2</td>
<td>7.6±0.1</td>
<td>9.7±0.2</td>
<td>11.5±0.1</td>
<td>14.0±0.4</td>
<td>16.1±0.3</td>
<td>21.1±0.3</td>
</tr>
</tbody>
</table>

Amount Permeated (µg) at Each Interval (h)

2 ml of each formulation was taken. Actual T.D.C. was taken as 100%. At each time interval all formulations are significantly (p<0.001) different from one another except for those marked similarly. For every formulation, the % amount permeated at each time interval was significantly (p<0.001) different from preceding time interval except for those marked similarly, on the top left hand side of each numeric value.

Table 7: Comparison of Various Formulations in Terms of Total Amount Permeated, % Permeation, Steady State Flux and Apparent Permeability Coefficient P_app from In vitro Permeation Studies Using Pig Cornea

<table>
<thead>
<tr>
<th>Formulations</th>
<th>Total amount permeated in Shug (µg)</th>
<th>% Permeation</th>
<th>Steady state flux (µg/min/cm²)</th>
<th>Apparent permeability coefficient P_app(cm/sec) X 10⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>999.2±69.9*</td>
<td>51.5±3.6*</td>
<td>2.4±0.2*</td>
<td>17.0±6.7*</td>
</tr>
<tr>
<td>F2</td>
<td>1019.3±62.6*</td>
<td>52.8±3.2*</td>
<td>2.5±0.2*</td>
<td>17.5±6.0*</td>
</tr>
<tr>
<td>F5</td>
<td>501.1±9.0*</td>
<td>30.8±0.6*</td>
<td>1.21±0.3*</td>
<td>10.25±7.7</td>
</tr>
<tr>
<td>F6</td>
<td>545±13.0*</td>
<td>31.1±0.7*</td>
<td>1.32±0.3*</td>
<td>9.17±12.2</td>
</tr>
<tr>
<td>F7 (Ether inj.)</td>
<td>489±8.0*</td>
<td>27.5±3.5*</td>
<td>1.19±0.0*</td>
<td>8.72±0.21</td>
</tr>
<tr>
<td>F8 (ACZ)</td>
<td>422±5.0*</td>
<td>21.1±0.3*</td>
<td>1.03±0.2*</td>
<td>7.9±2.8</td>
</tr>
</tbody>
</table>

All formulations are significantly (p<0.001) different from one another, except for those marked similarly, in terms of their total amount permeated, % permeation, steady state flux and apparent permeability coefficient.
Reduction in IOP was highest with F2. A maximum reduction of 3.3 mm Hg was observed at 1h and the value was twice of that achieved with DORZOX® that was 1.7 mm Hg at 1h. It may however be noted that Dorzox® contains 2% w/v dorzolamide vis-à-vis our formulations which contains 1.0% w/v ACZ. So the array of systemic side effects, if any (no change in IOP observed in the contralateral eye indicates low systemic absorption), is expected to be low with ACZ formulation developed by us.

One way ANOVA followed by Dunnet’s test was carried out for all the formulations to compare each formulation with the array of systemic side effects, if any (no change in IOP observed in the contralateral eye indicates low systemic absorption), is expected to be low with ACZ formulation developed by us.

Figure 6: % Corneal permeation of various formulations with reference to Time in hours

In-vivo Studies

The physiological effectiveness of the formulations was determined in terms of their IOP lowering effect in normotensive rabbits. Table 8 shows the measured drop in IOP of the normotensive rabbits as a function of time after instillation of various formulations of acetazolamide. No significant change in IOP was observed in the untreated eye during the entire course of measurement in any of the formulations. This clearly indicates that all the formulations elicited a localised action within the eye and that the activity shown is in no case related to systemic absorption, followed by a subsequent redistribution.2,13.

Table 8: Comparison of Reduction in Intraocular Pressure vs Time of Various Formulations in Normotensive Rabbits (n=4)

<table>
<thead>
<tr>
<th>Time</th>
<th>DORZOX</th>
<th>F1</th>
<th>F2</th>
<th>F6</th>
<th>F7 (Ether inj.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0h</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.25h</td>
<td>-0.5±0.2</td>
<td>-0.7±0.5</td>
<td>-0.7±0.4</td>
<td>-0.8±0.2</td>
<td>-1.4±0.4*</td>
</tr>
<tr>
<td>0.5h</td>
<td>-0.8±0.1</td>
<td>-1.9±0.4*</td>
<td>-2.7±1.0**</td>
<td>-1.1±0.6</td>
<td>-1.5±0.2**</td>
</tr>
<tr>
<td>1h</td>
<td>-1.7±0.2*</td>
<td>-2.2±0.5**</td>
<td>-3.3±0.4**</td>
<td>-1.0±1.2</td>
<td>-1.0±0.2**</td>
</tr>
<tr>
<td>1.5h</td>
<td>-1.6±0.2*</td>
<td>-2.2±0.7**</td>
<td>-2.9±0.2**</td>
<td>-0.4±0.8</td>
<td>-0.8±0.3*</td>
</tr>
<tr>
<td>2h</td>
<td>-1.3±0.2*</td>
<td>-2.1±0.3**</td>
<td>-2.5±0.2**</td>
<td>-0.6±0.7</td>
<td>-0.7±0.3*</td>
</tr>
<tr>
<td>3h</td>
<td>-1.2±0.2**</td>
<td>-2.4±0.3**</td>
<td>-2.9±0.4**</td>
<td>-0.0±0.5</td>
<td>-0.6±0.3</td>
</tr>
<tr>
<td>4h</td>
<td>-0.8±0.2</td>
<td>-2.0±0.4</td>
<td>-1.4±0.2</td>
<td>-0.5±0.8</td>
<td>-0.9±0.7**</td>
</tr>
<tr>
<td>5h</td>
<td>-0.5±0.1</td>
<td>-1.4±0.5</td>
<td>-0.9±0.3</td>
<td>-0.3±0.7</td>
<td>-0.8±0.4*</td>
</tr>
<tr>
<td>6h</td>
<td>-0.1±0.0</td>
<td>-0.6±0.6</td>
<td>-0.2±0.2</td>
<td>-0.3±0.3</td>
<td>-0.1±0.3</td>
</tr>
</tbody>
</table>

Results are expressed as mean±S.D., n=4.
* Values for F6 at all time points are not significantly different from one another (p<>0.05).
** Values are significantly higher than Dorzox at respective time point (p<0.001) from one another.
Surprisingly, the F2 formulation showed a maximum IOP lowering effect of 29.2% followed closely by F1 (23.9%), while formulation F6 (10.09%) and F7 (14.3%) showed comparatively lower IOP reduction. It can be explained on the basis that they form a more intimate contact with the corneal epithelium and hence permeate to a larger extent. Use of a combination of surfactants has been reported to enhance the stability of the micellar membrane of ivermectin47. Further PG is proposed to be a better permeation enhancer. It may however be noted that formulation F2 showed a significant more prolonged effect.

The formulations F6 (10.09%) and F7 (14.3%) showed comparatively lower IOP reduction. It can be explained on the basis that they form a more intimate contact with the corneal epithelium and hence permeate to a larger extent. Use of a combination of surfactants has been reported to enhance the stability of the micellar membrane of ivermectin47. Further PG is proposed to be a better permeation enhancer. It may however be noted that formulation F2 showed a significant more prolonged effect.

The formulations F6 (10.09%) and F7 (14.3%) showed comparatively lower IOP reduction. It can be explained on the basis that they form a more intimate contact with the corneal epithelium and hence permeate to a larger extent. Use of a combination of surfactants has been reported to enhance the stability of the micellar membrane of ivermectin47. Further PG is proposed to be a better permeation enhancer. It may however be noted that formulation F2 showed a significant more prolonged effect.

The formulations F6 (10.09%) and F7 (14.3%) showed comparatively lower IOP reduction. It can be explained on the basis that they form a more intimate contact with the corneal epithelium and hence permeate to a larger extent. Use of a combination of surfactants has been reported to enhance the stability of the micellar membrane of ivermectin47. Further PG is proposed to be a better permeation enhancer. It may however be noted that formulation F2 showed a significant more prolonged effect.

The formulations F6 (10.09%) and F7 (14.3%) showed comparatively lower IOP reduction. It can be explained on the basis that they form a more intimate contact with the corneal epithelium and hence permeate to a larger extent. Use of a combination of surfactants has been reported to enhance the stability of the micellar membrane of ivermectin47. Further PG is proposed to be a better permeation enhancer. It may however be noted that formulation F2 showed a significant more prolonged effect.

The formulations F6 (10.09%) and F7 (14.3%) showed comparatively lower IOP reduction. It can be explained on the basis that they form a more intimate contact with the corneal epithelium and hence permeate to a larger extent. Use of a combination of surfactants has been reported to enhance the stability of the micellar membrane of ivermectin47. Further PG is proposed to be a better permeation enhancer. It may however be noted that formulation F2 showed a significant more prolonged effect.
Stability Studies

The formulations showing significantly high entrapment and promising pharmacodynamic results (F1 and F2) were evaluated for leakiness, aggregation behavior and T.D.C. upon storage. The formulations were kept in 30 ml stoppered glass vials and stored under two different conditions (refrigerated and ambient condition). Aliquot samples from the formulations were withdrawn at definite time intervals (0, 1, 2, 3 and 4 months) and analyzed spectrophotometrically for the extent of entrapment. Reduction in the percent entrapment with respect to the initial sample (0 month; 100% entrapment) is reported for the vesicles. The samples were also evaluated microscopically to observe the extent of aggregation.

Table 11: Results of stability studies for formulation F1

<table>
<thead>
<tr>
<th>Condition</th>
<th>Drug Leakage (% Loss)</th>
<th>Drug Aggregation Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 mon</td>
<td>1 mon</td>
</tr>
<tr>
<td>Ambient</td>
<td>-</td>
<td>3.73</td>
</tr>
<tr>
<td>Cond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerator</td>
<td>-</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Drug leakage and fusion behavior of the formulations F1 and F2 were evaluated, at different time intervals, at ambient conditions (room temperature) and under refrigeration (4°C). Extent of aggregation and drug leakage upon storage of formulation F1 and F2 at ambient temperature or under refrigeration was sufficiently low. From the above data shown in table 11 it was noticed that maximum drug loss for formulation F1 was up to 14.56% at ambient temperature, while it was significantly lower (7.81%) for F2. The stability or storage of formulations F1 and F2 were better in refrigerator than at ambient temperature because % drug leakage and drug aggregation at refrigerator were sufficiently lower than at an ambient temperature.

Safety Studies

Acute Dermal Irritation/Corrosion Test as per OECD Guideline 404

The score for dermal irritation/corrosion study are compiled. The interpretation of scores clearly indicates a non-irritant/non-corrosive nature of developed vesicles when applied to dermal tissues, and hence they may be considered safe for dermal application. The study was conducted in accordance with OECD guidelines as a preamble to guideline 404 for ocular irritancy.

Acute Eye Irritation/Corrosion Test as per OECD Guideline 405

The scores for developed formulation(s) again established that developed vesicular systems are safe for ocular use. There were no signs of irritation/corrosion in any of the ocular tissues. Score for F1 and F2 was 0. Hence, the developed vesicles may be considered safe for ocular use.

CONCLUSION

It was observed that the formulations prepared by ethanol injection method using co-solvent (F2) showed better entrapment efficiencies (66.5%) and corneal permeation (52.8%). Another formulation, F1 in which a combination of co-solvents was employed, also yielded sufficient percent entrapment (64.0%) and corneal permeation (51.5%). The particle size of formulations F1 (250 nm) and F2 (162 nm) were in nanometer range. A corresponding niosomal formulation was prepared, by reverse evaporation method, and evaluated in terms of its particle size (14 µm), % entrapment efficiency (26%) and % corneal permeation (31%), establishing the importance of the presented system. We also compared the developed system by similarly prepared system where the co-solvents was replaced with tween 80 as an edge activator to result in elastic vesicles. Later did not compare with formulations F1 and F2.

The developed formulations (F1 and F2) could be sterilized successfully both by autoclave and filtration methods. Both the formulations were also stable (in terms of % percent drug loss and aggregation behavior). With more than 90% of the drug remaining/entrapped within the vesicles even after storage of up to 4 months in case of formulation F2. The developed formulations were found to be safe for ocular use. Comparing the formulations F1 and F2 with marketed formulation Dorzol 8% indicates significantly better % lowering of IOP with the developed formulations.

The present work establishes the safety, stability and sterility of the developed formulations indicating the scope of attaining economically viable preparations; however the clinical effectiveness needs to be confirmed in humans.

REFERENCES

5. Aggrawal D, Garg A, Kaur I. Development of topical niosomal preparation of acetazolamide: preparation and

Cite this article as:

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.