Research Article

DEVELOPMENT AND VALIDATION OF STABILITY INDICATING RP-HPLC METHOD FOR ROSUVASTATIN CALCIUM

D. Balanagamani 1*, K. Deepthi 2, K. Lakshmi Sivasubramanian 1

1Department of Pharmaceutical Analysis, Sri Venkateswara College of Pharmacy, Chittoor, India
2Department of Pharmaceutical Analysis, Bharat Institute of Technology, Hyderabad, India

*Corresponding Author Email: mani.pharmsmiley@gmail.com

Article Received on: 20/11/16 Revised on: 08/12/16 Approved for publication: 15/12/16

DOI: 10.7897/2230-8407.0712157

ABSTRACT
A stability indicating linear, accurate, specific and sensitive reverse phase - HPLC method has been developed along with validation parameters for the determination of Rosuvastatin calcium (RSV) in pharmaceutical dosage form. The chromatographic separation was performed by using symmetric C18 column (75*4.6 mm, 3.5 µm particle size). Mobile phase was used in the ratios (60:40) of 0.1% of formic acid in water and acetonitrile (ACN). Flow rate was set at 1 ml/min at room temperature with detecting wavelength at 242 nms by using chemstation software. Retention time of RSV was found to be about 3.6 min. The linearity was performed by using concentration ranges from 10-60 µg/ml with a correlation coefficient value of 0.9999. The percentage recovery was found to be 100.77 – 106.75. Limit of detection and Limit of Quantification were performed by using a method of signal to noise (S/N) ratio and was found to be 0.2, 0.5 µg/ml respectively. The developed analytical method has been validated and the values were within the acceptance limit according to ICH guidelines. Degradation studies were performed by subjecting to different stress conditions like acidic, alkaline, thermal (60, 80, 100), oxidative degradation. Based on the percentage of degradation, the samples were subjected to LC-MS for determining the mass elucidation of degraded compounds.

Keywords: Rosuvastatin calcium, RP-HPLC, Degradation studies, LC-MS.

INTRODUCTION
Rosuvastatin (RSV) Calcium, 7-{4-[4-(fluorophenyl)-6-(1-methylethyl)-2-[(methyl sulfonyl) amino]-5-pyrimidi-nyl]-3,5-dihydroxy-6-heptanoic acid calcium, which is a highly effective HMG-COA Reductase Inhibitor. It is widely used in the treatment of hyperlipidemias and related conditions to prevent cardiovascular diseases. Literature survey reveals that few methods were reported for the determination of Rosuvastatin Calcium in the pharmaceutical formulations by using HPLC1-6, UPLC7, Spectrophotometry8. In the present work we focused on the development and validation of optimum chromatographic conditions for the determination of RSV in pharmaceutical dosage forms along with structural elucidation of degraded products formed under different stress conditions can be applied successfully to quality control purposes.

MATERIALS AND METHODS
Reagents and Chemicals
Pure sample of RSV was gifted by DR’ILS, Hyderabad Central University (HCU), Gachibowli, Hyderabad. All Chemicals used were HPLC grade. Acetonitrile, Formic acid, Analytical grade Hydrochloric acid, Sodium hydroxide and 30% Hydrogen Peroxide solution (v/v) were obtained from Merck limited, Mumbai, India. Rosuvas 10 was obtained from a local pharmacy which is manufactured by Ranbaxy laboratories. High purity Deionised water was obtained from a Milli-Q (Millipore, Milford, MA, USA) purification system.

Equipment and Chromatographic conditions
The chromatographic system used to perform the development and validation of proposed method was an Isocratic HPLC system of Agilent Technologies with 1200 series pump and DAD detector with chemstation software, symmetric C18 column (75*4.6 mm, 3.5 µm). Separation was achieved by using a mobile phase consist of 0.1% Formic acid in water – Acetonitrile (60:40 v/v) solution at a flow of 1 ml/min. The eluent was monitored using PDA detector at a wavelength 242 nms. The column was maintained at room temperature and 10 µl sample was injected for each determination. The mobile phase was filtered prior to use through 0.45 µm filter.

Preparation of Stock, Standard and Test solution
Stock solution (1000 µg/ml) of RSV reference standard was prepared by transferring 5 mg accurately weighed into 5 ml volumetric flask and mobile phase was added after sonicated for 10 min. The solution was diluted by using mobile phase. Standard solution (100 µg/ml) was prepared by diluting 5 ml of stock solution to 50 ml with mobile phase.

To prepare stock solution (1000 µg/ml) for assay, 20 tablets were weighed and powdered. An aliquot of powder equivalent to the weight of 10 tablets was accurately weighed and transferred to 5 ml volumetric flask, water and acetonitrile (80:20 v/v) were added with sonication for 10 min at each addition separately. Standard solution (100 µg/ml) for assay was prepared by diluting 5 ml stock solution to 50 ml using same diluent with sonication at each addition. This solution was filtered through 0.45 µm nylon syringe filter. To prepare test solution (30 µg/ml)
for assay, 1.5 ml of standard solution was diluted to 5ml with diluent.

Method Validation

In the developed method validation parameters were performed with accuracy, precision, linearity. The method specificity was evaluated to ensure that there was no interference with placebo components.

Linearity

Seven solutions were prepared containing 5, 10, 20, 30, 40, 50, 60 µg/ml RSV concentrations. Each duplicate solution was injected. Linearity was evaluated by linear-regression analysis.

Precision

System precision was evaluated by analyzing the standard solution for five times and repeatability (method precision) was performed by assaying 6 sets of samples on the same day (intra-day precision).

Accuracy

Accuracy was assessed by the determination of the recovery of method at three different concentrations (equivalent to 80, 100, 120% of test solution) by addition of known amount of standard and placebo preparation. For each concentration three replicates were prepared and injected.

System suitability

The suitability of chromatographic system was tested before each stage of validation with 5 replicates of standard solution (30µg/ml). System suitability parameters like asymmetry, number of theoretical plates and tailing factor were determined.

Forced degradation studies

To perform the forced degradation studies stock solution (1000 µg/ml) was prepared by taking 10 mg RSV and subjected to acidic, alkaline, oxidative, thermal, photolytic conditions. For acidic degradation, stock solution was mixed with 0.1N HCl at RT for 24 hrs. For alkaline degradation, stock solution was treated with 0.1N NaOH at RT for 24 hrs. For oxidative degradation, stock solution was mixed with H2O2 (30%/v/v) for 24 hrs at RT. For thermal degradation, stock solution was exposed at 60°C, 80°C, 100°C for 2hrs. For photolytic degradation, stock solution was exposed to UV light for 1 hr. Blank solution also subjected to the same conditions. The resulting solutions were left to return to the RT and diluted with mobile phase to get 50µg/ml concentration. The stressed samples were measured by PDA detector. Based on the percentage of degradation, these samples were further subjected to LC-MS for mass elucidation.

RESULTS AND DISCUSSION

In this work, analytical HPLC method was used for determination of degraded products which was developed and validated. The basic chromatographic conditions were designed to be simple and easy to use was selected after testing different methods and different compositions of mobile phase. The symmetry C18 column was used because of its high resolving capacity and low back pressure. For mobile phase selection, preliminary trials were done by using different compositions of water and acetonitrile, 0.1% formic acid was mixed with water for better peak shape. The proportion of mobile phase components were optimized to reduce the retention time and to get good peak resolution of RSV from the degraded products. A Detection wavelength of 242 nms was selected after scanning from 190-370 nms by using PDA detector which results in good linearity and good resolution. The Retention time (Rt) for RSV was found to be 3.6 minutes as shown in Figure 1. The drug substance was easily extracted from the dosage form by using water and acetonitrile (80:20v/v).

After development of analytical method, it was validated according to ICH guidelines. This furnished evidence of the method was suitable for its intended purpose. The specificity of the method was determined by checking interference with drug and placebo components. The specificity of the method was evaluated by checking the peak purity of analyte peak during the forced degradation study.

Linearity was determined by plotting a calibration curve of RSV concentration against peak area. Linearity was good in the concentration range 5-60 µg/ml. The regression equation was \(y = 11.24x + 6.849 \), where \(x \) is the concentration in µg/ml and \(y \) is the peak area in absorbance units the correlation coefficient was 0.9999. The data of regression analysis and calibration curve was shown in [Table 1, Figure 2].

For system precision \([n=3] *6\) R.S.D was found to be 0.25%, 1.2%, 1.7% respectively on the same day (intra-day). For Accuracy \([n=3]*3\) determination of percentage recovery was performed by internal addition method (80%, 100%, 120% levels) and were found to be 102.15%, 100.77%, 106.75% respectively. The results were obtained within the limits and were shown in [Table 2]. LOD and LOQ were performed by using signal by noise \((S/N)\) ratio method and resulted as 3.4, 11.1 respectively. The Number of theoretical plates \((n)\), Asymmetric factor \((A_s)\), Retention time were shown in [Table 3]. System suitability parameters \((n=3)\) were performed and precise results were obtained for all validation parameters without significant variation as per ICH guidelines were shown in [Table 4].

Forced degradation studies were performed by subjecting to different stress conditions like acidic, alkaline, oxidative, thermal and photolytic conditions. Major degradation was observed in acidic conditions (up to 40%) with 5 degraded samples at R, values 0.653, 3.889, 5.770, 7.789, 8.261 with percentage areas 1.6%, 13.5%, 2.6%, 3%, 16.7% respectively. The chromatograms obtained for different degraded products were shown in [Figure 3].

The drug was degraded approximately 29% under thermal degradation at 80°C with 4 degraded samples at R, values 3.854, 7.7, 8.19 with percentage areas 8%, 3%, 16.5%. Negligible degradation was observed when subjected to other degradation conditions. Based on the percentage degradation the samples were further subjected to LC-MS to elucidate mass determination.

The same LC conditions were used for further analysis in LC-MS and reports for acid and thermal degradation at 80°C were shown in [Figure 4 & 5] respectively. From the LC-MS reports, degraded products were observed in acidic and thermal (80°C) conditions and their m/z ratio’s were found to be 50.10, 60.30, 480.30 and 464.30.
Figure 1: Chromatogram for method development of RSV

<table>
<thead>
<tr>
<th>S.no</th>
<th>Parameters</th>
<th>RSV</th>
<th>Acceptance criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Linearity range</td>
<td>5-60</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>Correlation coefficient(r^2)</td>
<td>0.9999</td>
<td>>0.996</td>
</tr>
<tr>
<td>3.</td>
<td>Slope (m)</td>
<td>11.35</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>Intercept</td>
<td>10.26</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 2: Calibration curve showing linearity of RSV

Table 2: Accuracy study data

<table>
<thead>
<tr>
<th>Accuracy level</th>
<th>No.</th>
<th>Area count</th>
<th>Mean value of peak area</th>
<th>Mean % Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>80%</td>
<td>1</td>
<td>613.6</td>
<td>610.1</td>
<td>102.15%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>604.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>611.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>1</td>
<td>671.9</td>
<td>672.96</td>
<td>100.77%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>673.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>673.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120%</td>
<td>1</td>
<td>762</td>
<td>762.9</td>
<td>106.75%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>763.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>763.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: LOD and LOQ Data

<table>
<thead>
<tr>
<th>Validation parameter</th>
<th>Time range (min.)</th>
<th>RT (min.)</th>
<th>N</th>
<th>Aₙ</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD</td>
<td>5.00</td>
<td>6.00</td>
<td>3.766</td>
<td>7857</td>
<td>0.92</td>
</tr>
<tr>
<td>LOQ</td>
<td>5.00</td>
<td>6.00</td>
<td>3.761</td>
<td>6101</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Table 4: System Suitability Data

<table>
<thead>
<tr>
<th>S.No</th>
<th>Parameters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Width at half height</td>
<td>0.115</td>
</tr>
<tr>
<td>2.</td>
<td>5 sigma</td>
<td>0.292</td>
</tr>
<tr>
<td>3.</td>
<td>Tangent</td>
<td>0.202</td>
</tr>
<tr>
<td>4.</td>
<td>Tailing</td>
<td>0.283</td>
</tr>
<tr>
<td>5.</td>
<td>USP Tailing</td>
<td>1.273</td>
</tr>
<tr>
<td>6.</td>
<td>Symmetry</td>
<td>0.758</td>
</tr>
</tbody>
</table>
Figure 2: Chromatograms of forced degradation studies: Chromatographic data after subjecting to a) Acidic b) Alkaline c) Oxidative d) Thermal (at 60°C) e) Thermal (at 80°C) f) Photolytic (UV) degradation

Figure 3: m/z ratios of acid degradation samples
ACKNOWLEDGEMENT

Authors are thankful to Dr. Reddy’s Institute of life sciences (DR’ILS), HCU, Gachibowli, Hyderabad for providing facilities to execute the research work. It gives a great pleasure to acknowledge my immense respect and depth of gratitude to Dr. Srinivas Oruganti, Head of CPRI (Center for Process and Research Innovation) at DR’ILS, Hyderabad Central University, Gachibowli, Hyderabad.

REFERENCES

13. Dujuan Zhang, Jing Zhang, Xiaoyan Liu, Chunmin Wei, Rui Zhang, Haojing Song, Han Yao, Guiyan Yuan, Benjie Wang, Ruichen Guo. Validated LC-MS/MS Method for the Determination of Rosuvastatin in Human Plasma:

Cite this article as:

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.