DEVELOPMENT OF MICROWAVE ASSISTED SYNTHESIS FOR COMMON MOLECULES
Megha M. Bodhe *1, Lalit G. Rathi1, U. N. Mahajan1, Vijayshri V. Rokde1
1Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Maharashtra, India
2Institute of Pharmaceutical Education and Research, Borgaon (Meghe), Wardha, Maharashtra, India
*Corresponding Author Email: megha_bodhe@rediffmail.com

INTRODUCTION
Practical’s in organic chemistry include the synthesis and evaluation of organic and pharmaceutical compounds which require more than 2-3 h heating for synthesis. Further purification, drying and evaluation of the synthesized compound is not possible within a single practical. To overcome these problems, microwave assisted synthesis was developed for organic compounds that require time in minutes only. Microwave heating can offer a rapid and efficient alternative to conventional oil-bath, sand-bath, or steam bath technology. It offers reduced reaction time, lower cost, simplicity in processing, reduced pollution, high yield, no contact required between the energy source and the reaction vessels. Keeping the above in view, β-Resorcylic acid & Benzocaine were synthesized by microwave irradiation. The synthesized compounds were subjected to physico-chemical studies like melting point, TLC, partition coefficients, dissociation constants and % ionization. The structures of synthesized compounds were characterized by UV, FT-IR, MASS and NMR spectroscopy.

MATERIALS AND METHODS
All the chemicals used in the reaction were of AR grade. For synthesis, CATA’s Scientific Microwave Synthesis System was used. Melting point was determined by open capillary method using DBK programmed melting point apparatus and uncorrected. The purity and homogeneity of the compounds as well as completion of reaction times was checked by thin layer chromatography. The spots were visualized by iodine vapours and visualized with U. V. light. All the compounds were purified by preparative TLC. The IR spectra of all the compounds were recorded in FT-IR (Model: ShimadzuFT-IR - 8400 S) using KBr pellets in the region of 4000-500 cm-1. The NMR spectra were recorded in Bruker Avaze II at a frequency of 400 MHz and the Mass spectra were recorded on QP-2010 PLUS GC-MS.

Synthesis of β-Resorcylic acid
In 50 ml two necked flask, 0.55 g of resorcinol, 2.77 g of sodium hydrogen carbonate and 5.55 ml water were placed. The mixture was refluxed by microwave irradiation in scientific microwave oven for 45 min (Power input: 350 W, 5 P). Then the solution was refluxed over a flame for 30 min while passing a rapid stream of CO2. The solution was acidified with 2.5 ml conc. hydrochloric acid. The solution was cooled in ice bath, collected the acid by filtration and recrystallized from hot water using a little decolorizing carbon. The purity of product was checked by thin layer chromatography using acetone/ n-hexane as mobile phase in the ratio of 8:2.
Synthesis of Benzocaine

In 10 ml two necked flask, 0.6 g p-amino benzoic acid and 4 ml absolute ethanol (previously saturated with dry hydrogen chloride) were placed. The mixture was refluxed by microwave irradiation for 25 min (power input: 280 W, 4 P). The hot solution was poured into excess of water and sodium carbonate was added until it was neutral to litmus. The product was filtered off and dried. The recrystallization was carried out by rectified spirit. The purity of product was checked by thin layer chromatography using chloroform: ethyl acetate as mobile phase in the ratio of 9:1.

![Benzocaine](image)

Reaction time of products by Conventional and MWI method

<table>
<thead>
<tr>
<th>Compound</th>
<th>Conventional method</th>
<th>Microwave method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (min) Yield (%)</td>
<td>Time (min) Output (Watt) Yield (%)</td>
</tr>
<tr>
<td>β-Resorcylic acid</td>
<td>240 64</td>
<td>45 350</td>
</tr>
<tr>
<td>Benzocaine</td>
<td>120 69</td>
<td>25 280</td>
</tr>
</tbody>
</table>

Characterization

Formation of β-Resorcylic acid & Benzocaine were confirmed by IR, NMR and Mass spectral data. The characterization data of the synthesized compounds has been given as below:-

β-Resorcylic acid:
- IR (KBr) (cm⁻¹): 3250-2500 cm⁻¹ (OH stretching of carboxylic acid), 1650.95 cm⁻¹ (C=O stretch). GC-MS (m/z) = 154(M⁺).
- ¹H NMR (400 MHz, DMSO) : δ 11.39 & 11.42 (s, 1H of OH), 7.26 (s, 1H), 7.37-7.41 (m, Ar-H), 7.84-7.86 (m, Ar-H).

Benzocaine:
- IR (KBr) (cm⁻¹): 3000-2800 cm⁻¹ (C-H stretching of CH₂& CH₃), 1685.67 cm⁻¹ (C=O stretching of ester), 3425 & 3340.48 cm⁻¹ (asymmetric & symmetric N-H stretching of aromatic amine), 1635.52 cm⁻¹ (N-H deformation), 3050 cm⁻¹ (aromatic C-H stretching), GC-MS (m/z) = 165 (M⁺).
- ¹H NMR (400 MHz, CDCl₃) : δ 6.62-6.65 (d, J = 2.01, 1H), 7.84-7.87 (d, J = 1.96, 1H), 4.28-4.34 (q, J = 2.02, 2H), 1.34-1.37 (t, J = 3.00, 3H).

RESULTS AND DISCUSSION

The β-Resorcylic acid & Benzocaine were prepared by microwave irradiation method. The reaction yield, melting point, Rᵢ value and other physicochemical data of synthesized compounds are given in table.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Molecular formula</th>
<th>Nature</th>
<th>Melting point (°C)</th>
<th>Rᵢ value</th>
<th>Partition coefficient(P)</th>
<th>Dissociation constant(pKa)</th>
<th>% Ionization</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Resorcylic acid</td>
<td>C₇H₆O₄(154)</td>
<td>Faint yellow crystals</td>
<td>218-220</td>
<td>0.61</td>
<td>5.84</td>
<td>3.70</td>
<td>20.45%</td>
</tr>
<tr>
<td>Benzocaine</td>
<td>C₁₃H₁₂NO₂(165)</td>
<td>Brown crystals</td>
<td>89-90</td>
<td>0.60</td>
<td>2.57</td>
<td>2.45</td>
<td>40.89%</td>
</tr>
</tbody>
</table>

CONCLUSION

A convenient microwave assisted synthesis of organic compounds was developed. The method offers several advantages including good to high yields and an easy experimental work-up procedure. The reaction time has brought down from hours to minutes. Overall decrease in heating time effectively reduces the cost of fuel or electricity. The physicochemical parameters and spectral analysis of all the compounds were studied. Thus, the newly developed procedure in this study is economic, rapid and simple. Microwave irradiation facilitates the polarization of molecules causing rapid reaction to occur. In conclusion, we have successfully adopted the use of microwave technique for routine practical classes in chemistry laboratories.

REFERENCES


Cite this article as:

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.