A REVIEW ON EBOLA VIRUS, THE DISEASES, CAUSES AND MANAGEMENT
Shubham Kaushal, Shalini Kumari *
Dreamz college of Pharmacy, Khilra, Mandi, HP, India
*Corresponding Author Email: thakur.shalini978@gmail.com

ABSTRACT
Ebola virus diseases (EVD) is a painful reminder as an outbreak anywhere which can be a risk everywhere. The Global Health Security Agenda pursue to enforce public health systems in most affected countries to eliminate the spreads before they become emergencies. Hemorrhagic fever occurs in less than half of patients and it takes place most commonly in the gastrointestinal tract. The symptoms progress over the time and patients suffer from dehydration, stupor, confusion, hypotension, multi-organ failure, leading to fulminant shock and eventually death. Preclinical evaluation is also underway for various vaccine candidates. It has been hypothesized that infection of macrophages is one of the causes for development of hemorrhage. The objective of the proposed work is to review out the reason and management of Ebola virus and communicating clear and accurate information to all stakeholders including the general public which is the need of the hour.

Keywords: Ebola virus, hemorrhagic fever, outbreak, diseases, management.

INTRODUCTION
Ebola virus disease (EVD) is also known as Ebola hemorrhagic fever (EHF). As the name implies, it causes abnormal bleeding inside and outside of the body, affecting humans and other primates. Ebola disease is caused by an infection with a virus, which is named after a river in the Democratic Republic of the Congo (formerly Zaire) in Africa, where it was first recognized. It originates from the genus Ebola with family Filoviridae (order Mononegavirales), according to the International Committee on Taxonomy of Viruses. EHF is an acute viral syndrome with fever and subsequent bleeding diathesis marked by high mortality in human and nonhuman primates (monkeys, gorillas and chimpanzees). EHF is caused by any of five genetically different members of the Filoviridae family.

1) Zaire ebolavirus (ZEBOV)
2) Sudan ebolavirus (SEBOV)
3) Ivoire ebolavirus
4) Bundibugyo ebolavirus (BDBV)
5) Reston ebolavirus (REBOV).

Ivoire ebolavirus has been accompanied with only one human case. REBOV has only caused disease in non-human primates (NHP) and was found in swine suffering from porcine reproductive and respiratory disease syndrome. It was first discovered in laboratories in Reston, Virginia, United States of America (USA) in 1989 after some quarantined, crab-eating macaque monkeys originating from the Philippines became ill and died.

Zaire, Sudan and Bundibugyo Ebola viruses are accountable for most of the EHF epidemic but ZEBOV establish a particularly serious threat to both human and NHPs in sub-Saharan Africa. Ebola virus disease (EVD) is a severe, often fatal illness in humans. EVD outbreaks have a case fatality rate of up to 90%.
Types of Ebola Virus

Ebola haemorrhagic fever (EHF) is caused by any of above five genetically distinct members.

1. Ebola virus or Zaire Ebola virus (EBOV)
This is most fatal among all five and has the highest case-fatality rate, upto 90% in some epidemics. The symptoms of Zaire Ebola virus has like malaria and patients are sometimes treated with quinine. The transmission of virus was to be due to reuse of the needle for Lokela's injection without sterilization. Concurrent transmission was also due to the traditional interment preparation method, which involves washing and gastrointestinal tract cleansing. Zaire Ebola virus has been associated with only one human case.

2. Sudan virus (SUDV)
The virus also caused threaten effects to the people who’s were working in cotton factory in Nzara, Sudan, with the first case reported as a worker exposed to a potential natural reservoir.

3. Tai Forest virus (TAFV)
Also referred to as Ivory Coast Ebola virus and Tai Ebola virus; it was first discovered among chimpanzees from the Tai Forest in Cote d Ivoire, Africa. The source of contamination was believed to be the meat of infected Western Red Colobus monkeys, upon which the chimpanzees preyed. One of the scientists performing the necropsies on the infected chimpanzees contracted Ebola.

4. Bundibugyo virus (BDBV)
BDBV is a close relative of the much more commonly known Ebola virus (EBOV). The name BDBV is originated from Bundibugyo which is the name of the one of the town of Ugandan Bundibugyo District, where it was first discovered.

5. Reston virus (RESTV)
It is not thought to be disease-causing in humans. It is non-pathogenic to humans however hazardous in monkeys. Reston Ebola virus disease has found in non-human mammals and was also in swine suffering peoples with reproductive and respiratory disease syndrome. EHF typically appears in sporadic outbreaks coinciding with the rainy season, and is usually spread in humans within a health-care setting.

History

Ebola virus was first well-known in 1976 when an onset of Ebola hemorrhagic fever developed in Zaire and another later that year in Sudan. The Zaire Ebola virus has one of the highest virulence rates of virus affecting humans. In the 1976, Ebola virus killed 88 percent of patients, 81 percent in 1995, 73 percent in 2001, 2002, and 90 percent in 2003, although none of these outbreaks were as large as the original.

Sudan Ebola virus has a lower, yet still very dangerous, fatality rate of 53 percent in 1976, 65 percent in 1979, 53 percent in the over 400 patients infected in 2000, and 41 percent in 2004. Ivory Coast Ebola virus was first identified in 1994 when a scientist carried out dissection on chimpanzees deflated Ebola hemorrhag ic fever. Most Ebola virus outbreaks have originated in Africa and have traveled only to other countries through freight of non-human mammals or through accidental contamination in testing facilities.

Prevalence

convulsion of diseases in West Africa begin by Zaire Ebola virus is the protracted, greatest and tealest in history.

There were 22,859 EVD cases and approximately 9,162 deaths as of 11 February 2015 compared to the cumulative sum of past episodes in 36 years (1976-2012), and over six times the total number of mortality12, 13, 14.

From 1976 to December 2012, there was 23 outbreaks of Ebola have been summarized; during these events a total of 2388 Ebola cases including 1590 deaths were reported15. Since its discovery in 1976, Ebola virus disease (EVD) has mostly occurred in sub-Saharan Africa. Research have based upon serological confirmation of Ebola virus infection in orangutans in Indonesia16 in several bat species in China17 and in Rousettus leschenaultia fruit bats, Bangladesh18.

Table 1: Prevalence of Ebola virus diseases in different countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Total Cases</th>
<th>Laboratory Confirmed Cases</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guinea</td>
<td>2292</td>
<td>2051</td>
<td>1428</td>
</tr>
<tr>
<td>Liberia</td>
<td>7719</td>
<td>2830</td>
<td>3177</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>7897</td>
<td>6375</td>
<td>1968</td>
</tr>
<tr>
<td>Nigeria</td>
<td>20</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>United state</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Spain</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Onset
EVD has an incubation period of 2 to 21 days before the onset of symptom. Incubation period is last for 4 to 10 days19.

Symptom
Bleeding: All people infected show some symptoms of circulatory system like impaired blood clotting, in 40–50% bleeding from puncture sites and mucous membranes (e.g. mouth, gastrointestinal tract, nose, ears, vagina and gums), reddening of eyes and bloody vomit has also been reported20–24.

Epidemiology

Ebola virus disease is a zoonotic disease and each outbreak in the human population is started by an entrance from an animal inventory i.e. due to hunting, direct contact with infected animals, gripping of bush meat25. A principal origin of infection is direct contact with a sick person, or when viral infection is in the highest point or when contaminates objects used by the patient. Body fluids and secretions mainly blood, saliva, urine, vomit, feces, semen are infectious. Filoviruses enter the host through mucosal surfaces, breaks, and abrasions in the skin26.
Pathophysiology of Ebola virus disease

The natural reservoir host of Ebola virus is fruit bats, which belong to Pteropodidae family, and accidental hosts are humans and non-human primates. These viruses remain in nature prior to vast natural or human made environmental changes, relevance elements or ecologic conditions enable them to remerge. Bats and apes proceed entry of filovirus in the human is interfere by the viral stick glycoprotein, which attaches the viral particles to the cell surface. The chief feature of epidemics is human to human transmission. Direct infection of monocytes and macrophages causes the release of cytokines leading to inflammation and fever, which causes to host immune responses to Ebola virus and damage of the cell.

After access in human body, EBOV mainly effects on lymph nodes, Liver and Adrenal gland.

- **Lymph nodes:** EBOV causes infection of macrophages and dendritic cells. They lead to depletion of lymphocytes and impairment in host immune response.
- **Liver:** In liver, it causes infection and necrosis of hepatocytes through the damage of the endothelial cells. The formation of the lining of the blood vessels has carried out. There was difficulty in coagulation of the infected individual’s blood. As the platelets would not be able to coagulate, this result in hypovolemic shock or decrease in blood pressure and death may also occur.
- **Adrenal gland:** In Adrenal gland it causes infection and necrosis of adrenal cortical cells. Due to which synthesis of steroids is impaired.
Figure 4: Pathophysiology of Ebola Virus Disease

Diagnosis of EVD

Following laboratory tests are used for the diagnosis of Ebola virus infections.30, 31, 32

<table>
<thead>
<tr>
<th>Table 2: Laboratory test for diagnosis of EVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigen detection tests</td>
</tr>
<tr>
<td>Serum neutralization test</td>
</tr>
<tr>
<td>RT-PCR assay</td>
</tr>
<tr>
<td>Virus isolation by cell culture</td>
</tr>
<tr>
<td>Haematocrit</td>
</tr>
<tr>
<td>ELISA</td>
</tr>
</tbody>
</table>

Management considerations for EVD33

There are seven steps for the management of EVD that are given below:
Figure 5: Management of Ebola virus

Therapeutic approaches & treatment of EVD

There is no particular drugs and treatment for EVD. The treatment is mainly based on supportive and symptomatic remedy focusing on supplying proper hydration and nutritional support with antibiotics, control of organ failure, and Antimalarial drugs if required.

Table 3: Therapeutic Approaches & Treatment of EVD

<table>
<thead>
<tr>
<th>Sr. no</th>
<th>Agent</th>
<th>Manufacturer</th>
<th>Stage of evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TKM-Ebola</td>
<td>Tekmira, Canada</td>
<td>Phase I</td>
</tr>
<tr>
<td>2</td>
<td>Favipiravir (T-705)</td>
<td>Institute National, France</td>
<td>Phase II, protective in mouse model</td>
</tr>
<tr>
<td>3</td>
<td>CMX001 (Brincidofovir)</td>
<td>Chimerix, Durham</td>
<td>Phase II</td>
</tr>
<tr>
<td>4</td>
<td>JK-05</td>
<td>Sihuian Pharmaceutical Ltd China</td>
<td>Animal studies; Use in emergency situations for army only</td>
</tr>
<tr>
<td>5</td>
<td>BCX4430</td>
<td>BioCryst Pharmaceuticals, Durham</td>
<td>Phase I</td>
</tr>
<tr>
<td>6</td>
<td>Anti-Ebola hyperimmune globulin</td>
<td>None identified</td>
<td>Animal studies</td>
</tr>
<tr>
<td>7</td>
<td>ZMapp</td>
<td>National Institute of Allergy and Infectious Diseases NIAID</td>
<td>Phase I/II</td>
</tr>
<tr>
<td>8</td>
<td>ChAd3-EBO:</td>
<td>GlaxoSmithKline, National Institutes of Health</td>
<td>Phase I</td>
</tr>
<tr>
<td>9</td>
<td>rVSV-EBOV: recombinant vesicular stomatitis virus</td>
<td>New Link Genetics</td>
<td>Efficacy in rodents and nonhuman primates</td>
</tr>
<tr>
<td>11</td>
<td>Recombinant protein- Ebola glycoprotein</td>
<td>Protein Sciences</td>
<td>Efficacy in rodents.</td>
</tr>
<tr>
<td>12</td>
<td>EBOV GP Vaccine</td>
<td>Novavax, Gaithersburg</td>
<td>Preclinical studies; Nonhuman primate study</td>
</tr>
<tr>
<td>13</td>
<td>Oral Ad5: Oral tablet vaccine based on human adenovirus</td>
<td>Vaxart, South San Francisco</td>
<td>Protective against challenge in preclinical studies</td>
</tr>
<tr>
<td>14</td>
<td>rVSV-EBOV</td>
<td>Profectus Biosciences, Baltimore</td>
<td>Vaccine component expressing HIV gag.</td>
</tr>
<tr>
<td>15</td>
<td>DNA-EBOV</td>
<td>Inovio, San Diego, Calif</td>
<td>Phase I</td>
</tr>
<tr>
<td>16</td>
<td>Recombinant rabies EBOV</td>
<td>National Institutes of Health</td>
<td>Phase I</td>
</tr>
<tr>
<td>17</td>
<td>FGI-103</td>
<td>Recirca, Inc. (Painesville)</td>
<td>Protects mice with delayed cytokine response</td>
</tr>
<tr>
<td>18</td>
<td>TKM-Ebola</td>
<td>Tekmira Pharmaceuticals Corporation, Vancouver, Canada</td>
<td>Provided 100% survival in monkey</td>
</tr>
<tr>
<td>19</td>
<td>AVI-7537</td>
<td>Sarepta Therapeutics, Cambridge, MA, USA</td>
<td>Suppresses disease in mice and NHPs</td>
</tr>
<tr>
<td>20</td>
<td>BCX4430</td>
<td>BioCryst Pharmaceuticals</td>
<td>Inhibits infection in vitro</td>
</tr>
<tr>
<td>21</td>
<td>Clomiphene & Toremiphene</td>
<td>Inter Steroids Pharmaceutical Co., Ltd, Hangzhou, China</td>
<td>Inhibits virus entry in vitro in Vero E6 and HepG2 cell lines</td>
</tr>
</tbody>
</table>
RECOMMENDATIONS AND CONCLUSION

Ebola has been a hazard to human health due to terrible, highly virulent and contagious behavior since its discovery in 1976. Ebola fever has come out as one of the most fatal identified forms of hemorrhagic fever which causes higher number of mortality and morbidity rate. The transmission surrounding humans occurs mainly through the exchange of blood and body secretions. Other noticeable forms of expansion comprise hospital acquired infection and inadequate hygiene condition. There is an urgent requirement of dissemination of information to community and training programmes for doctors, nurses and other hospital staff. The future endeavors require the priority on the understanding of the differences among species of ebola virus. The best method to lower the cases and epidemic is to prevent the spread of the disease. The awareness programmes should be organized on large scale to develop the attentiveness about disease for its eradication. Although great improvements have been achieved over the past decade, better surveillance, real-time sharing of data and taking rapid action based on the available information remain necessary. Because Ebola virus is primarily transmitted through contact with the body fluids of symptomatic patients, the infection spread can be stopped by an early diagnosis, contact tracing, patient isolation and care, infection control and safe burial. Many factors are responsible for Ebola Epidemic. The time period for the aggression of virus and its symptoms has up to twenty-one days.

REFERENCES

Cite this article as:

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.