EFFECT OF ROASTING ON PREBIOTIC POTENTIAL OF SOYABEAN (Glycine max)
Jayashri G. Mahore *, Sachin M. Uttarwar, Poonam A. Pethkar, Satish V. Shirolkar
Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune-18, Maharashtra, India
*Corresponding Author Email: jayashri_mahore@rediffmail.com

ABSTRACT
The purpose of this study was to investigate the effect of roasting on prebiotic potential of Soyabean (Glycine max). Administration of prebiotic confers health benefits by modulating immune system. Soyabean pomace left after extraction of protein and lipid is good source of olosaccharides and non-starch polysaccharides, which have ability to reach the colon, where it could get fermented and produce health beneficial products such as short chain fatty acids. The purpose of roasting was to minimize the antinutrient factors from raw soyabean. Soyabean was roasted and its ability to support the growth of Lactobacillus acidophilus was checked in reconstituted agar containing raw and roasted Soyabean as a sole carbon source. After incubation samples were tested for optical density, pH, % titratable acidity and antimicrobial effect against pathogen. Difference in raw and roasted soyabean was checked by subjecting the samples to SEM and X-ray diffraction. Increased optical density, lowering of pH and increase in titratable acidity in presence of roasted soyabean, confirmed the ability of roasted Soyabean to support the growth of L. acidophilus.

Keywords: Prebiotics, Soyabean (Glycine max), Lactobacillus acidophilus, roasting

INTRODUCTION
Gut is complex community where large variety of microorganisms harbors1. Microorganisms in the gut play an important role in maintaining wellbeing of human. Healthy microbial flora prevents proliferation of pathogens and boost immune system. Difference in microbial composition of healthy person and diseased person was reported2. Intestinal bowl diseases (IBD) person has decreased count of healthy gut flora when compared to healthy one. Restoration of gut flora with administration of prebiotic could enhance the therapeutic effects of drugs used to treat IBD. Prebiotic are indigestible substances which are having ability to reach the colon. Fermentation of indigestible substances in colon by resident bacteria produces short chain fatty acids (SCFAs)3. SCFAs mainly acetate, propionate and butyrate. Butyrate produced by bacteria have positive effect on colonocytes and maintains proliferation of colonocytes4. Acid production resulted into lowering of pH. Acidic environment prevent proliferation of pathogenic microorganism. This would definitely help to treat intestinal diseases like IBD. Propylactic role of prebiotic in prevention of IBD reported by researchers. Prevention of colitis by combination of fructooligosaccharide and inulin in HLA-B27 transgenic mice was reported by Hoentjen F5: Increased beneficial microbial count and increased concentration of butyrate showed attenuating effect on macroscopic and histological inflammation in HLA-B27 transgenic rats. Thus previous research described the attenuation of IBD by administration of prebiotic6,7

Soy milk and tofu prepared from Soyabean (Glycine max) highly consumed by people of Southeast Asia. Soy milk considered as one of nutritious health drink used widely as dairy milk alternative for those who shows lactose intolerant. Soya tofu, a protein rich paneer prepared form Soyabean. After extraction of essentials remaining pomace is used as in animal and poultry industry. Soyabean is rich source of protein, lipids, minerals and vitamin B. Soyabean also contains isoflavones, saponins, phytates, protease inhibitors, phenolic acids, lecithin, dietary fiber, phytosterols, and omega-3 fatty acids8. In vitro fermentability of Soyabean okara was already reported9. But protease inhibitors, lectins (hemagglutinins), and allergens (glycinin and β-conglycinin) are antinutritional factors present in raw soyabean, which needs to be eliminated. All these antinutritional factors are unstable to heat. Along with heat unstable antinutritional factors, some nutritional heat stable olosaccharides, non starch polysaccharides, and phytates are also present in Soyabean which can confer health promoting effects. Thus from the literature it was found that roasting of raw Soyabean could enhance the nutritional property of Soyabean. Although various studies have established the positive health benefits of prebiotics and Soyabean, it would be useful to understand the action of roasting on dietary fibre of Soyabean that contribute as significant sources of fiber and protein in a normal balanced diet. Thus the aim of present investigation was to evaluate the effect of roasting on prebiotic potential of Soyabean.

MATERIALS AND METHODS
Soyabean (Glycine max) was purchased from local market and authenticated by Agharkar Research Institute, Pune, India. Lactobacillus acidophilus (NCIM-5426) purchased from National Collection of Industrial Microorganisms, Pune. deMan Rogosa Sharpe agar, Nutrient agar and MacConkey agar other ingredients used to prepare media was purchased from Himedia, Mumbai, India. Other chemicals used of analytical grade.
Physicochemical investigation

Crude fibre

The sample was treated successively with boiling solutions of sulphuric acid and potassium hydroxide of specified concentrations. The residue was separated by filtration (w2), washed, dried, weighed and kept to form ash within a range of 475 or 500 °C. The loss of weight resulting from ash corresponds to the crude fibre present in the sample (w3).%

\[\text{Percent crude fibre} = \left(\frac{\text{w2} - \text{w1}}{\text{w3} - \text{w1}} \right) \times 100 \]

Sample was roasted in hot air oven at 121°C for 30 min. Sample was subjected to Scanning electron microscopy (SEM) and X-ray diffraction (XRD) to evaluate the effect of roasting.

Scanning Electron Microscopy (SEM)

The scanning electron microscopy (SEM) was performed with a scanning electron microscope (XL-30-ESEM, FEI, Holland), using a voltage of 15 kV. Samples were fixed with double-sided tape onto aluminium cylinders and coated with a layer of gold.

X-ray Diffraction

X-ray Diffraction patterns were obtained with an X-ray diffractometer Brucker D8 Advanced equipped with a copper anode X-ray tube. The diffractometer was operated at 80 mA and 5k, and the spectra were scanned over a diffraction angle (2θ) range of 10-80° at 6°/min.

Inoculum preparation and cultivation conditions

Reconstituted MRS broth was prepared by using Tryptone, meat extract, yeast extract, potassium phosphate, tween80, ammonium citrate, sodium acetate, magnesium sulphate, manganese sulphate and finally soyabean was added at final concentration of (1-3%). The reconstituted MRS broths were sterilized at 121°C for 15min. The overnight (18h) culture was added to the media and incubated under microaerophilic condition for 48h. Samples were withdrawn after specific time interval. Removed samples were subjected to measure optical density at 600nm, pH, % titratable acidity, dry mass and antimicrobial activity against S. aureus and E.coli.

RESULT AND DISCUSSION

Physicochemical investigation of soyabean

Crude fibre of Soyabean was found to be 17.17%

Figure 1 and 2 shows SEM of raw and roasted Soyabean which determined shape and surface morphology of raw and roasted Soyabean. In raw soyabean the rounded outer surface are not swollen, after roasting these become slightly swollen as heat changes the structure.

X-ray Diffraction

Figure 3 and 4 shows the X-ray diffraction patterns of raw and roasted soyabean. X- ray diffraction was based on constructive interference of monochromatic X- rays and a crystalline sample. The difference in raw and roasted soyabean indicates the drastic change in distribution of the crystalline phases when the soyabean was exposed to thermal treatment.
Effect of prebiotic raw soyabean on Lactic acid production (% titratable acidity) by *Lactobacillus acidophilus* and without prebiotic (Control)

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Control (without prebiotic)</th>
<th>1% w/v Raw Soyabean</th>
<th>2% w/v Raw Soyabean</th>
<th>3% w/v Raw Soyabean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.02±0.05</td>
<td>0.10±0.06</td>
<td>0.05±0.05</td>
<td>0.05±0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.05±0.05</td>
<td>0.12±0.03</td>
<td>0.15±0.03</td>
<td>0.15±0.03</td>
</tr>
<tr>
<td>4</td>
<td>0.13±0.03</td>
<td>0.15±0.03</td>
<td>0.2±0.02</td>
<td>0.2±0.02</td>
</tr>
<tr>
<td>6</td>
<td>0.2±0.02</td>
<td>0.21±0.01</td>
<td>0.28±0.01</td>
<td>0.26±0.01</td>
</tr>
<tr>
<td>8</td>
<td>0.22±0.01</td>
<td>0.28±0.01</td>
<td>0.33±0.03</td>
<td>0.29±0.02</td>
</tr>
<tr>
<td>24</td>
<td>0.29±0.03</td>
<td>0.4±0.06</td>
<td>0.44±0.01</td>
<td>0.42±0.01</td>
</tr>
<tr>
<td>26</td>
<td>0.3±0.01</td>
<td>0.56±0.02</td>
<td>0.48±0.01</td>
<td>0.52±0.07</td>
</tr>
<tr>
<td>28</td>
<td>0.34±0.01</td>
<td>0.62±0.05</td>
<td>0.53±0.07</td>
<td>0.62±0.04</td>
</tr>
<tr>
<td>30</td>
<td>0.38±0.06</td>
<td>0.74±0.04</td>
<td>0.67±0.06</td>
<td>0.72±0.02</td>
</tr>
<tr>
<td>48</td>
<td>0.43±0.02</td>
<td>0.9±0.02</td>
<td>0.94±0.06</td>
<td>1.05±0.02</td>
</tr>
</tbody>
</table>

All values are expressed as Mean ± SD, n=2
inhibition in presence of roasted one indicated that compared to control (without prebiotic). The increase in zone of optical density, dry mass, lactic acid production and pH lowering MRS broth medium compared to raw and control.

Increase in optical density of such as by neutralizing toxins. numbers of viable pathogens or by affecting their metabolism, substances by modulate. Protection of large intestine from pathogens could help to health of large intestine Lactobacilli appear to be capable of displacing or s bacteria, which usually have a narrow spectrum of activity, as well as bacteriocins and bacteriocin products such as fatty acids, to control (without prebiotic).

The % titratable acidity of the L. acidophilus containing raw and roasted Soyabean are represented in table 1 and 2 respectively. The % titratable acidity of the all L. acidophilus containing roasted Soyabean to be slightly higher than the titratable acidity of the raw Soyabean.

Antimicrobial activity of Lactobacillus acidophilus in presence of prebiotic Soyabean against E. coli

In the present investigation, Soyabean showed maximum antimicrobial activity against pathogenic Gram –ve E. coli microorganism which were compared with positive control. The zone of inhibition was observed against E. coli. This result showed that the prebiotic i.e., Soyabean stimulate the growth of L. acidophilus and suppress the growth of pathogenic microorganism.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Control (without prebiotic)</th>
<th>1%w/v Roasted Soyabean</th>
<th>2%w/v Roasted Soyabean</th>
<th>3%w/v Roasted Soyabean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.02±0.03</td>
<td>0.13±0.06</td>
<td>0.15±0.03</td>
<td>0.15±0.03</td>
</tr>
<tr>
<td>2</td>
<td>0.05±0.03</td>
<td>0.20±0.09</td>
<td>0.26±0.01</td>
<td>0.23±0.02</td>
</tr>
<tr>
<td>4</td>
<td>0.13±0.03</td>
<td>0.3±0.07</td>
<td>0.35±0.00</td>
<td>0.28±0.01</td>
</tr>
<tr>
<td>6</td>
<td>0.2±0.02</td>
<td>0.31±0.06</td>
<td>0.38±0.02</td>
<td>0.32±0.04</td>
</tr>
<tr>
<td>8</td>
<td>0.22±0.01</td>
<td>0.40±0.06</td>
<td>0.40±0.06</td>
<td>0.39±0.04</td>
</tr>
<tr>
<td>24</td>
<td>0.29±0.03</td>
<td>0.50±0.02</td>
<td>0.51±0.03</td>
<td>0.55±0.03</td>
</tr>
<tr>
<td>26</td>
<td>0.30±0.01</td>
<td>0.67±0.06</td>
<td>0.71±0.00</td>
<td>0.67±0.07</td>
</tr>
<tr>
<td>28</td>
<td>0.34±0.01</td>
<td>0.69±0.02</td>
<td>0.79±0.02</td>
<td>0.68±0.02</td>
</tr>
<tr>
<td>30</td>
<td>0.38±0.06</td>
<td>0.71±0.08</td>
<td>0.87±0.03</td>
<td>0.91±0.05</td>
</tr>
<tr>
<td>48</td>
<td>0.43±0.02</td>
<td>1.13±0.02</td>
<td>1.14±0.03</td>
<td>1.39±0.05</td>
</tr>
</tbody>
</table>

*All values are expressed as Mean ± SD, n=2

The selected L. acidophilus was found to inhibit growth of E. coli. Significant increases in the inhibition of E. coli was observed in presence of raw and roasted Soyabean compared to control (without prebiotic). Higher zone of inhibition was observed in presence of prebiotic compared to control (without prebiotic). Production of metabolic by-products such as fatty acids, hydrogen peroxide, hydrogen and hydroxyl ions, and ammonia, as well as bacteriocins and bacteriocin-like substances are responsible to antimicrobial activity of Lactobacilli. Bacteriocins are proteinaceous, bactericidal substances synthesized by bacteria, which usually have a narrow spectrum of activity, inhibiting strains of the same or closely related species. Bacteriocins appear to be capable of displacing or suppressing the growth of other bacteria.

Protection of large intestine from pathogens could help to modulate health of large intestine. Production of antimicrobial substances by Lactobacilli along with prebiotic could prevent colonization by pathogenic microorganisms by reducing the numbers of viable pathogens or by affecting their metabolism, such as by neutralizing toxins.

Conclusions

Increase in optical density of L. acidophilus was observed in the presence of roasted Soyabean (Glycine max) in the reconstituted MRS broth medium compared to raw and control. The increase in optical density, dry mass, lactic acid production and pH lowering effect observed after 48 h incubation in reconstituted MRS broth compared to control (without prebiotic). The increase in zone of inhibition in presence of roasted one indicated that Soyabean had a great prebiotic potential compared to raw when roasted. From results of all parameters, it can be concluded that the roasted Soyabean had great prebiotic potential and can promote the growth of Lactobacillus acidophilus and inhibit the replication of pathogenic bacteria.

References

Cite this article as:

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.