Research Article

EVALUATION OF ANTIOXIDANT AND PROXIMATE COMPOSITIONS OF THE LEAF EXTRACT OF GNETUM GNEMON L.

Pankaj Bharali 1*, Priyanka Dutta 2, Mohan Chandra Kalita 3, Arup Kumar Das 2, Hui Tag 2 and Ananta Madhab Baruah 3

1Centre of Excellence for Bioresources and Sustainable Development, DBT-APSCS&T, Kimin, Papumpare District, Arunachal Pradesh-791121, India
2Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh-791112, India
3Department of Biotechnology, Gauhati University, Guwahati -781014, Assam, India

*Corresponding Author Email: pankajbharali08@gmail.com

Article Received on: 13/08/18 Approved for publication: 28/09/18

DOI: 10.7897/2230-8407.0910234

ABSTRACT

Gnetum gnemon is an important leafy vegetable among the tribal people of the state. The leafy vegetables consist a notable amount of proximate constituents as well as the mineral contents. Therefore the present study deals with the investigation of preliminary phytochemical investigation, antioxidant as well as the proximate composition of the leaf of G.gnemon. The study revealed that the leaf methanolic extract and the water extract shows the presence of significant amount of secondary metabolites. The methanol extract was recorded highest DPPH scavenging activity comparable to the standard ascorbic acid. The investigation of proximate and mineral content proves that the leaf of G.gnemon is a good source of nutrients.

Keywords: Proximate, Minerals, Secondary metabolites, Nyishi

INTRODUCTION

The lofty mountainous state of India, Arunachal Pradesh popularly called “land of rising sun” is exceedingly diverse in geology, topography, climate and flora and fauna often referred to as “Paradise of the Botanist”. The state exhibits a plethora of trees, shrubs, herbs, epiphytes, ferns, cryptogams and houses numerous rare, endangered, and endemic species. The state with 82% of forest cover (broadly tropical, subtropical, temperate, sub temperate, alpine) which have flavored luxuriant flora. The region falls within ten threatened biota “hot spots” of tropical – temperate, alpine) which

The documentation of the medicinal plants has been a continuous process throughout the globe. Among the total recorded (2, 97,000 – 5, 10,000) plant species in the world1, about (10-20) % is used as medicine in treatment of various diseases4. Arunachal Pradesh, a botanical paradise is tucked in the Eastern Himalaya and well known for its rich bio resources and ethnocultural diversity. The use of medicinal plants in the treatment and ailmant of various diseases in Arunachal Pradesh has been in practice since time immemorial. In the last few decades, there has been worldwide revival on the use of the medicinal or herbal plant drugs/phytochemicals in diverse areas including medicine, nutrition etc. As per as documentation of medicinal and aromatic flora of the state is concerned, scanty works have been done till date. Among them Joseph6 from Siang district, Tiwari et al.5 from Tirap district, Das4 from Siang valley, Haridashan4 from whole state, etc were the pioneers of ethnobotanical research in Arunachal Pradesh. Among the important medicinal plant species G. gnemon is an important one which is used as leafy vegetable among the tribal people of the state. The young twigs are also available in the local market. Gnetum is the lone genus in the family Gnetaceae consisting about 30 species. The majority of the species of Gnetum is lianas. The plants are dioecious, with the male plants producing catkins of stamens and the female’s catkins of ovules barely protected by an envelope. From an evolutionary perspective, G. gnemon is interesting taxa, whose origin and relationship to angiosperms are not completely understood. Chamberlien10 wrote that the Gnetales during the upper Cretaceous as a branch of the Coniferales, which in turns evolved from the Pteridophytes (fern). However, because G.gnemon and other members of the order (Ephedra and Welwitshia) have some characteristics also found in the angiosperms (for example, leaves that look like angiosperms leaves), some botanist believe that the Gnetales are the ancestors of the angiosperms10. The young leaves are used as a vegetable by the local people of the state.

Medicinal plants provide the primary health care service to the countryside people because they are having potential source of primary & secondary metabolites11. The metabolites like alkaloids, phenols, terpenoids, flavonoids etc are the secondary metabolites which are not directly involved in the physiology of the plant13 whereas the mineral contents (both micro and macro), vitamins, crude fiber etc are the primary metabolites which are directly involved in the physiology f the plant body. The analysis of the crude fat, crude fiber, crude protein, ash content etc. are called as the proximate composition of medicinal and edible plants play a crucial role in assessment of the nutritional significance13. Therefore the present study deals with the preliminary phytochemical investigation, nutritional and antioxidant activity of the leaf of G. gnemon.

MATERIALS AND METHODS

The plant material was collected from Rajiv Gandhi University Botanic Garden, Arunachal Pradesh. It was identified with the
help of the flora of Arunachal Pradesh. The herbarium was prepared following the methodology of Jain and Rao14 and the voucher specimen (Voucher No: PB/RGUH/2016/23) was deposited to Rajiv Gandhi University. Important ethnomedico-utilization was recorded with the consultation of local people.

Plant material
The leafy plant material were collected and washed thoroughly in running water to remove dust particles. Leaves were then cut into small pieces and dried in hot air oven at 35°C for overnight. The dried samples were powdered and kept in moisture free container for further chemical analysis.

Preparation of plant materials
Leaf powder was soaked in different solvents i.e., acetone, chloroform, ethanol and water with occasionally shaking at room temperature for 48 hours. Samples were then filtered and kept in hot air oven at 35°C for overnight. The dried samples were powdered and kept in moisture free container for further chemical analysis.

Phytochemical screening
Condensed leaf extracts were performed for preliminary phytochemical screening such as alkaloids (Wagner, Hager and Mayer’s test), carbohydrates and glycosides (Fehling, Benedict and Molisch’s test), phenols and tannin (Lead acetate and FeCl₃ test), saponin (Foam and Haemolysis tests), steroid (Salkowski test), fixed oils and fats (Spot test), flavonoid (Lead acetate test) and proteins (Biuret test) by following standard procedure.15

Quantitative determination of the secondary metabolites
The quantitative estimation of saponin, flavonoid, polyphenol, alkaloids and tannin etc are done by using a slight modification of the standard protocol.16,17

Antioxidant Activity by DPPH method
The antioxidant activity of both plant extracts and the standard were assessed on the basis of the radical scavenging effect of the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH)-free radical activity by modified method.18

The free-radical scavenging activity (RSA) of the extracts against DPPH was calculated according to the formula:

\[\% \text{RSA} = 100 \times \left(1 - \frac{A_E}{A_D}\right) \]

where \(A_E\) is the absorbance of the standard antioxidant or extract, and \(A_D\) is the absorbance of the negative control.

Proximate analysis
The analysis of moisture, crude fat, fiber, protein and ash were determined using the standard protocols from the manual of Methods in food Analysis, Academic Press, New York.19 All values are presented as average of triplicate analysis.

Mineral analysis
The ash content was prepared with the help of muffle furnace in 600°C and solution was prepared by dissolving ash with distilled water. Minerals were analyzed using the solutions and dissolving it in 10% HCl (25 ml) and 5% lanthanum chloride (2 ml), boiling, filtering and making up to standard volume with deionized water. The mineral elements were determined in the solutions obtained above-Na and K by flame photometry, Model 405 (Corning, Halstead Essex, UK) using NaCl and KCl to prepare standards. Phosphorus was determined colorimetrically using a Spectronic 20 (Gallenkamp, London, UK) instrument, with KH₂PO₄ as a standard. All other elements (Ca, Mg, Zn, Fe, Mn, Cu and Cr) were determined by atomic absorption spectrophotometry, Model 403 (Perkin-Elmer, Norwalk, Connecticut, USA).20

RESULTS
G. gnemon grows at the hillsides in primary and secondary forests of the tropical rainforest climate with bimodal or uniform rainfall patterns. It does not tolerate salt spray and can’t grow in the coastal areas. It is a small to medium-size tree (unlike most other Gnetum species, which are lianas), growing to 15–20 m tall. The leaves are evergreen, opposite, 8–20 cm long and 3–10 cm broad, entire, emerging bronze-coloured, maturing glossy dark green. The fruit -like strobilus consist of little but skin and a large nutlike seed 2–4 cm long inside. Leaves are dark green, shiny, smooth, acute at both the ends, opposite, and variable in size and shape. Typical size of leaves is 10-20 cm (4.8inches) long and 4-7cm (1.6-2.8inches) wide. Leaf shape is elliptic, lanceolate, and ovate oblong. Branches flush and flower throughout the year. Flowers monosexual; catkin-like formation; female flower 5-8 at each node have an ovulate strobilus 6-10cm (2.44 in) in length and bears the ovules or seed, it is also called as megasporangiate strobilus This axis bears a “pair of opposite sheathing bracts at the base, followed by five or six whorls of ovules, with five to seven ovules in whorls”. Male flower consists of stamen and perianth, the staminate strobilus or male cone which bears microsporangia (pollen sac) is called a microsporangiate strobilus (Fig 1).

Fruits are yellow, turning purple-red or orange-red with maturity, and ovoid, 1-3.5cm in length (Fig 2). The skin is thin. In Indonesia this species fruits three times per year, March-April, June-July, and September-October. Fruits are large ovoid or ellipsoid seed per fruit.

The young leaves and tender strobili of G. gnemon are used as vegetables after boiling as well as salad. The fibers of the stems are used for making traditional rope by the Nyishi people. In addition to the young leaves, flowers and fruits are used as vegetables, eaten raw or boiled. The young inflorescences are also fried and taken as vegetable.21

The bioactive chemical compounds have great role in the curing of diseases. The bioactivity evaluation of the plant groups is like antimicrobial, antioxidant, anticancer, antilarval etc. The ethnic people use various types of plants in their daily life. They also use various plant products as biopesticides, insecticides, larvicides etc. in the raw form. The preliminary phytochemical screening reveals the presence of the secondary metabolites like alkaloids, phenols, saponins, terpenoids, flavonoids etc. which helps for future research. The result of the phytochemical test for various extract of the plant is summarized in the table 1. The quantitative determination of the secondary metabolites is shown in the table 2. Antioxidant activity of the leaf extract was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH)-free radical scavenging activity. The methanol extract shows the lowest IC50 value of 17.46% which is comparable with the standard ascorbic acid (12.71%) (Table no. 3). The man-made or natural substances which can prevent or delay any type of cell damage are the basic antioxidant substances. Vegetables and fruits are the main sources of antioxidants like vitamin C and E, selenium and among carotenoids like beta-carotene, lycopene, lutein and zeaxanthin etc. Leaf of G. gnemon contains the polyphenols as well as...
flavonoid compounds which act as a free radical scavenging activity.

Determination of dry matter, moisture, crude fat, crude fiber, crude protein, ash content etc. are the main foundation of the biochemical profiling and nutritive value of the leaf plant samples. The proximate compositions including moisture content, total ash, crude protein, crude fiber, crude fat and free amino acid of leaf are shown in the table 4. Minerals are the essential nutrients, which are said to be present in small amounts in the body or in several parts per million (ppm)31. They are essential because each element plays an important role in metabolic processes of the human body and their absence can cause deficiency symptoms in animals32. The macronutrients as well as the micronutrients are recorded in the table 5 & 6 respectively.

DISCUSSION

Ethnobotanical investigation of *G. gnemon* indicates that the leaves have a good market demand as a leafy vegetable among the tribal society. The outer flash of the seed can be fried to make a chewy snake or added to other dishes33. Preliminary phytochemical investigation indicated the presence of the secondary metabolites like alkaloids, carbohydrates and glycosides, phenolic compounds and a small amount of saponin, flavonoids, gum and mucilage, (Table 1). Among the four different solvents methanol and water are more active than the glycosides, phenolic compounds and a small amount of saponin, secondary metabolites like alcohols and dyes, gums and mucilage. For the biochemical profiling and nutritive value of the leaf extract of *G. gnemon* contains a good quantity of ashen contents showing in the form 3, which indicated the presence of notable amount of both micro and macro nutrients. Crude fibers, which is the non-digestible carbohydrate and lignin which also enhances the digestibility, its presence in high level can cause intestinal irritation and lower digestibility and decreased nutrient usage35.

The micronutrients also called as the trace elements which are the most essential nutrients for human health. Trace elements take part in the function of different enzymes and are required in a number of metabolic processes in the body. Copper (Cu) plays a vital role in the enzyme metabolism36. Among the mineral contents Fe, Ca, P, K, Na, Zn, Mn etc are most important ones and they constitute an essential part of any balance diet. Iron (Fe) and copper (Cu) both are especially involved in the synthesis of cytochrome oxidase. But excess amount of copper can lead to jaundice (Wilson’s disease)37. Zinc (Zn) has a vital role in the activation of certain enzymes like dehydrogenase, alkaline phosphatase and carboxypeptidase. The leaf of *G. gnemon* is a good source of N (1.29±0.09%) as well as the other macronutrients like Mg (0.27±0.07) and K (0.44±0.61%) (Fig 4). The micronutrients are also detected in a good quantity in the young leaf of *G. gnemon* (Fig 5). So from the above study it can be inferred that the investigated plant sample is a good source of medicines for the treatment of various diseases as well as a nutritious leafy vegetable.

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Chemical test</th>
<th>Chloroform</th>
<th>Petroleum ether</th>
<th>Ethanol</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>Hager’s test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Myer’s test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Wagner’s test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carbohydrates and Glycosides</td>
<td>Fehling’s test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Benedict’s test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Morisch’s test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Barfoed test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Steroid</td>
<td>Salkowski’s test</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saponin</td>
<td>Foam test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phenol</td>
<td>FeCl3 Sol. test</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Lead acetate test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoid</td>
<td>Lead acetate test</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Protein</td>
<td>Biurret test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gum and Mucilage</td>
<td>Alcohol 95% test</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tannins</td>
<td>FeCl3 Sol. test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Alkaloids</th>
<th>Total phenol</th>
<th>Flavonoid</th>
<th>Tannin</th>
<th>Saponin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnetum gnemon (leaf)</td>
<td>1.07±1.04</td>
<td>0.89±0.01</td>
<td>0.92±0.04</td>
<td>7.32±1.08</td>
<td>5.32±2.17</td>
</tr>
</tbody>
</table>

Table 1: Preliminary phytochemical investigation of the leaf extract of *Gnetum gnemon*

<table>
<thead>
<tr>
<th>Plant Parts</th>
<th>Extract</th>
<th>µg/ml concentration</th>
<th>% of inhibition</th>
<th>IC50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Leaf</td>
<td>Acetone</td>
<td>22.21</td>
<td>36.57</td>
<td>42.74</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>25.29</td>
<td>60.96</td>
<td>55.02</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>23.54</td>
<td>31.34</td>
<td>38.32</td>
</tr>
<tr>
<td></td>
<td>Ascorbic acid</td>
<td>29.93</td>
<td>47.73</td>
<td>59.27</td>
</tr>
</tbody>
</table>

Table 2: Quantitative analysis of the secondary metabolites

Table 3: Antioxidant activity of the leaf extract of *Gnetum gnemon*
Fig 1: *Gnetum gnemon* plant in natural habitat

Fig 2: Mature Seed of *Gnetum gnemon*

Fig 3: Proximate composition of the leaf of *Gnetum gnemon*

CONCLUSION

The present study highlighted the ethnobotanical important of the leaf of *G. gnemon* and also enlisted the composition of the secondary metabolites as well as the mineral constituents. The leaf contains a good amount of micro as well as macronutrients which takes a decisive role in the human diet. So there is a need of the conservation of the species to check its exploitation as the species is concerned.

ACKNOWLEDGMENT

Author (PB) is thankful to the Department of Biotechnology, Government of India, New Delhi for the fellowship and acknowledge the Advanced level Biotech hub, Gauhati University for the laboratory facility.

REFERENCES

Cite this article as:

Source of support: Department of Biotechnology, Government of India, New Delhi, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.