Research Article

AN EFFICIENT SYNTHESIS OF 2,4,5-TRIARYL-1H-IMIDAZOLE USING SnO2/SiO2: NANOCOMPOSITE CATALYST

Chandrashekhar G. Devkate 1,2, Satish S. Kola 1, Digambar D. Gaikwad 2, Mohammad Idrees M. Siddique 3
1Dept. of Chemistry, Government Science College, Gadchiroli, India
2Dept. of Chemistry, Government College of Arts and Science, Aurangabad, India
3Dept. of Chemistry, Government Institute of Science, Nagpur, India

ABSTRACT

SnO2/SiO2 catalyzed synthesis of 2,4,5-triarylimidazoles by the condensation of benzoin, aromatic aldehydes and ammonium acetate in presence of ethanol as solvent. The synthesis highlights a synthesis and use of SnO2/SiO2 nanocomposite heterogeneous catalyst and its reusability. The method is cost effective and ecofriendly. And use of ethanol as a solvent makes the method more green and efficient. The method has simple workup procedure and the products are obtained in good to moderate yields.

KEYWORDS: 2,4,5-triarylimidazoles, heterogeneous catalyst, SnO2/SiO2, benzoin.

INTRODUCTION

Imidazole ring system is an important nucleus found in a huge number of natural products and pharmacologically active compounds like Omeprazole1, Trifénalgrel2, Benzoiazepine3 and the Cimetidine are imidazole derivatives. Recently, 2,4,5-Triaryl-1H-imidazole compounds are gaining considerable significance because of their large spread biological activities and also their use has been increased in synthetic chemistry. Imidazole ring are largely used in inorganic liquids. Owing to such a huge importance of imidazole many methods for the synthesis of imidazole have been reported 5-7. Radziszewski and Japp in 1882, synthesized imidazole for first time by reacting 1,2-dicarbonyl compound, a variety of aldehydes and ammonia6. In recent literature many method are been reported using benzil/benzoin, aldehydes and ammonium acetate for the synthesis of 2,4,5-triaryl-1H-imidazoles by using variety of different catalyst like Yb(OTf)3, AcOH10, iodine11, acidic AlOCl12, silica gel, sodium bisulfate13, NiCl2-6H2O14, NH4OAc15, ionic liquid16 and PEG-40017.

Hence here we are interested to synthesized 2,4,5-triaryl-1H-imidazoles using SnO2/SiO2 which is a mesoporous silica supported heterogeneous catalyst with large surface area, high thermal stability and having large range of tunable pores. As it is a nano-composite material show enhanced properties than those of the individual components used separately18-22.

MATERIALS AND METHODS

General preparation of SnO2/SiO2 20 wt % catalyst

The SnO2/SiO2 nanocomposite heterogeneous catalyst was prepared by reported method. As reported we have synthesized range of SnO2/SiO2 catalyst by using 1.12 gm of tin (IV) chloride which was further dissolved in 25 mL distilled water to that a drop wise tetraethyl orthosilicate solution (3.21 gm) was added after that again cetyltrimethylammonium bromide 1% solution in 25 mL EtOH was added drop wise. The mixture was kept in autoclavable for 11 hrs at 60 °C then the mixture was dried for 6 hrs in oven at 120 °C the dried mixture was powdered by using mortar and pestle. After that the powder was calcined at 350 °C for 3 hrs. Further 10,15 and 25 wt % SnO2/SiO2 catalysts were prepared respectively.

Procedure for the Synthesis of 2,4,5-triaryl-1H-imidazoles 4(a-i)

For the synthesis of 2,4,5-triaryl-1H-imidazoles a benzoin (1) (1.0 mmol) and ammonium acetate (3 mmol) (3) mixture was dissolved in RBF (round bottom flask) to that aromatic aldehyde (2) (1 mmol) was added and then the catalyst 20 wt % SnO2/SiO2 (0.5 g) was added to it and then the mixture was reflux at 90°C for the respective time as given in Table 3. The reaction was monitored by using TLC at regular time interval. After the complete conversion the reaction mixture was poured onto ice and the solid product was separated was filtered and recrystallized using ethanol. And here the catalyst 20 wt % SnO2/SiO2 which is not soluble in ethanol, hence easily separated and reused.

Spectral data of some representative compounds

2-(4-Methoxyphenyl)-4,5-diphenyl-1H-imidazole (4a)

IR (KBr): 3454 (N-H), 1620 (C-O), 1580 (C-N) cm
1

1H NMR (CDCl3, 80 MHz; d, ppm): 7.98 (s, OCH3), 7.0 (d, 2H, J= 8.8 Hz, Ar), 7.43-7.47 (m, 5H, Ph), 7.03 (d, 2H, J= 8.8 Hz, Ar), EIMS (m/z,%,): 297 (M+), 235, 221, 207.

2-(4-Nitrophenyl)-4,5-diphenyl-1H-imidazole (4e)

IR (KBr): 3430 (N-H), 1720 (C=O), 1230 (NO2), 1510 (C=N), cm
1

1H NMR (CDCl3, 80 MHz; d, ppm): 8.80-8.20 (m, 15H, Ph), 9.30 (br s, NH), EIMS (m/z,%,): 297 (M+), 235, 221, 207.

2-(3-Chlorophenyl)-4,5-diphenyl-1H-imidazole (4h)

IR (KBr): 3440 (N-H), 1590 (C-N), 1340 (NO2), 1510 (C=N), cm
1

1H NMR (CDCl3, 80 MHz; d, ppm): 8.20-8.00 (m, 10H, Ph), 7.80-7.30 (AB, 4H, J= 0.9 Hz, Ar), EIMS (m/z,%,): 342 (M+), 297, 235.
IR (KBr): 1584 (C=N), 3452 (N-H), 1600 (C=C) cm⁻¹. ¹H NMR (CDCl₃, 80 MHz; d, ppm): 7.20-7.60 (m, 10H, Ph), 7.40 (d, 2H, J=10 Hz, Ar). EIMS (m/z, %): 331 (M⁺).

Scheme: Synthesis of 2,4,5-triarylimidazoles catalyzed by 20 wt % SnO₂/SiO₂ using ethanol as solvent.

Table 1: Effect of solvents on the synthesis of 2,4,5-triaryl-1H-imidazoles

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Time (min)</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THF</td>
<td>180</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>DMSO</td>
<td>185</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>CH₂Cl₂</td>
<td>165</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>CH-CN</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Dichlor</td>
<td>145</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>Toluene</td>
<td>140</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>MeOH</td>
<td>110</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>EtOH</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>H₂O</td>
<td>120</td>
<td>73</td>
</tr>
<tr>
<td>10</td>
<td>1:1 EtOH/H₂O</td>
<td>130</td>
<td>68</td>
</tr>
</tbody>
</table>

*Reaction condition: benzoin (1) (1.0 mmol), benzaldehyde (2) (1.0 mmol), ammonium acetate (3.0 mmol) and 20 wt % SnO₂/SiO₂ (0.5g) catalyst and reflux. *Isolated yields.

Table 2: Effect of amount of catalyst

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Time (min)</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>-</td>
<td>300</td>
<td>-</td>
</tr>
<tr>
<td>5b</td>
<td>SiO₂</td>
<td>160</td>
<td>30</td>
</tr>
<tr>
<td>5c</td>
<td>SnO₂</td>
<td>120</td>
<td>44</td>
</tr>
<tr>
<td>5d</td>
<td>10 wt % SnO₂/SiO₂</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>5e</td>
<td>15 wt % SnO₂/SiO₂</td>
<td>80</td>
<td>76</td>
</tr>
<tr>
<td>5f</td>
<td>20 wt % SnO₂/SiO₂</td>
<td>70</td>
<td>94</td>
</tr>
<tr>
<td>5g</td>
<td>25 wt % SnO₂/SiO₂</td>
<td>70</td>
<td>85</td>
</tr>
</tbody>
</table>

*Reaction condition: benzoin (1) (1.0 mmol), benzaldehyde (2) (1.0 mmol), ammonium acetate (3.0 mmol) and EtOH as solvent and reflux. *Isolated yields.

Table 3: Synthesis of 2,4,5-triaryl-1H-imidazoles using catalyst 20 wt % SnO₂/SiO₂

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aldehyde (R)</th>
<th>Time (min)</th>
<th>Product</th>
<th>M.P (°C)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>4-OMe</td>
<td>60</td>
<td>![image]</td>
<td>228-230</td>
<td>97</td>
</tr>
<tr>
<td>4b</td>
<td>4-Me</td>
<td>75</td>
<td>![image]</td>
<td>231-233</td>
<td>95</td>
</tr>
<tr>
<td>4c</td>
<td>H</td>
<td>80</td>
<td>![image]</td>
<td>276-278</td>
<td>90</td>
</tr>
<tr>
<td>4d</td>
<td>4-F</td>
<td>75</td>
<td>![image]</td>
<td>188-190</td>
<td>90</td>
</tr>
<tr>
<td>4e</td>
<td>4-NO₂</td>
<td>95</td>
<td>![image]</td>
<td>232-233</td>
<td>88</td>
</tr>
<tr>
<td>4f</td>
<td>4-OH</td>
<td>70</td>
<td>![image]</td>
<td>269-270</td>
<td>94</td>
</tr>
<tr>
<td>4g</td>
<td>3,4-OMe</td>
<td>55</td>
<td>![image]</td>
<td>221-223</td>
<td>95</td>
</tr>
</tbody>
</table>
RESULT AND DISCUSSION

The present scheme involves a synthesis of 2,4,5-triaryl-1H-imidazoles (4a-i) by the condensation of Benzoin (1), with aromatic aldehydes (2a-i) and ammonium acetate (3) in the presence of 20 wt % SnO2/SiO2 as catalyst and ethanol as solvent and was reflux at 90°C. Here we have observed that for all the different aldehydes we have used we got good yields as given in (Table 4).

Effect of solvent: Screening of different solvents from non-polar to polar as THF, DMSO, CH3CN, Dioxane, Toluene, CH3OH, C2H5OH, H2O, 1:1 EtOH : H2O. Here we have observed that the excellent conversion take place in less time by the use of EtOH (entry 8, Table 1). Also many others (entries 7,9,10, Table 1) shows good yields but takes more time for conversion.

Effect of catalyst amount: To know proper composition and activity of catalyst we have carried out the reaction with different composition, where we observed that without catalyst the desired product was not formed and when SiO2 and SnO2 were used separately gave poor yields but when SiO2 and SnO2 where used in mixture gave good yield. Then after to confirm the optimum amount of catalyst required for the reaction, we have performed the reaction with different percentage of catalyst and it was observed that the catalyst with 20 wt % SnO2/SiO2 (entry 5f, Table 2) gave excellent yield. Here we have recycled catalyst simply by filtration and was washed with n-hexane and dried at 90°C and the catalyst was used for next run. In way the catalyst was recycled and reused used for two to three times.

CONCLUSION

In conclusion, we report an efficient method for the synthesis 2,4,5-triaryl-1H-imidazoles where we have used a heterogeneous nanocomposite catalyst SnO2/SiO2 which is easily recycled and reused. And also use of ethanol as solvent, which makes this method more efficient and green. Further studies and application of this methodology for the synthesis of other interesting heterocycles are underway in our laboratory.

ACKNOWLEDGEMENTS

We are thankful to the Head of place of Research, Government Science College, Gadchiroli, 442605 and Indraraj Arts, Commerce and Science College, Sillod, Aurangabad, 431112 for their support.

REFERENCES


Cite this article as:

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.