INTRODUCTION

The development of benzimidazoles has attained major importance in recent years because of their tremendous biological importance. The anthelmintic, antifungal, antiprotozoal, antiulcer, anti-inflammatory, analgesic and anticancer properties of benzimidazoles have been reported. Many synthetic approaches were reported for the synthesis of benzimidazoles using aldehydes and acids in presence of catalysts such as boric acid, monobasic acids (Hydrochloric acid, acetic acid, and ethyl alcohol) by varying solvents (dimethyl formamide, acetonitrile, and nitrobenzene) and temperature conditions. The biological significance of benzimidazoles can be enhanced by substituting 1 and 2 positions with various alkyl, aryl, and heterocyclic groups and was reported. Among them piperazines are the groups possessing good biological activity and are being substituted to various important fused heterocyclic systems. In present methodology benzimidazole derivatives were prepared by treating diaminobenzene with benzoic acid in presence of sodium acetate, methyl alcohol, and 4-piperazine benzyl chloride. Because of its mild nature, easily availability and comfortable handling together with its low price made it a good catalyst for use in the synthesis of benzimidazole derivatives.

MATERIALS AND METHODS

Chemicals grade AR used in present investigation were procured from Aldrich chemicals, Hychem laboratories. Infrared spectra were recorded on Perkin Elmer Model 283B FT-IR instrument and values are given in cm\(^{-1}\). Proton magnetic resonance spectra were recorded on Avance-300 MHz Bruker UX-NMR instrument. The samples were made in CCl\(_4\) or chloroform-d (1:1) or DMSO-d\(_6\) using tetra methyl silane (Me\(_4\)Si) as the internal standard and are given in the \(\delta\) scale. Analytical thin layer chromatography (TLC) was performed on pre coated silica gel 60 F\(_{254}\) (0.5mm) glass plates. Visualization of the spots on TLC plates was achieved by exposing to iodine vapours and ultraviolet light. All solvents used for gel column chromatography were distilled prior to use. Silica gel used was 100-200 mesh & 60-120 mesh.

Procedure for synthesis of 2-phenyl benzimidazole

A mixture of (0.25mol) substituted diaminobenzene, (0.34ml) of benzoic acid, sodium acetate (0.15g) and methyl alcohol (4ml) were stirred for 1h at 80-90°C. The crude form of 2-phenyl benzimidazole was filtered, washed and recrystallised with pure ethanol to obtain it in pure form.

Procedure for synthesis of 1-(4-piperazinylbenzyl), 2-phenyl benzimidazole

A mixture of 2-phenyl benzimidazole (0.05 mol) is treated with 4-piperazine benzyl chloride (0.05mol) to get crude form of compound. It was washed and purified to obtain it in pure form.

RESULT AND DISCUSSION

Two pot synthesis of benzimidazole derivatives (5i-5v) was achieved by treating aromatic diamines with benzoic acid, sodium acetate, methyl alcohol and substituted piperazines in presence of sodium acetate, methyl alcohol and produced reaction products in good yield. By utilising various catalysts and solvents, reaction conditions were optimised at different temperatures. Among them the utilisation of sodium acetate as catalyst and methyl alcohol as solvent has proved more efficient and simple for the development of 1, 2 disubstituted benzimidazole derivatives.

The structural characterisation of series of synthesised compounds was achieved by IR and ¹H NMR spectroscopic methods and developed characteristic absorption peaks. The spectral data of the synthesised derivatives clearly show that aromatic diamines can be easily converted into benzimidazoles by utilising benzoic acid, sodium acetate and methyl alcohol.
Figure 1: Schematic Representation Of Synthetic Route
1. Diaminobenzene 2. P- Benzoic acid 3. 2-phenyl Benzimidazole.
4. 4-piperazine benzyl chloride
5(i-v). 1, 2 disubstituted Benzimidazoles
a. NaOAc (sodium acetate), CH₄O (methyl alcohol), 80°C

Table 1: Synthesised Benzimidazole Derivatives

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substituents</th>
<th>Compound</th>
<th>Molecular Formula</th>
<th>Time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(5i)</td>
<td>R=CH₃, R¹=H, R²=H</td>
<td></td>
<td>C₂₁H₂₈N₄</td>
<td>60</td>
<td>72</td>
</tr>
<tr>
<td>2(5ii)</td>
<td>R=CH₃, R¹=H, R²=CH₃</td>
<td></td>
<td>C₂₁H₂₈N₄</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>3(5iii)</td>
<td>R=CH₃, R¹=H, R²=CH₃CH₃</td>
<td></td>
<td>C₂₁H₂₈N₄</td>
<td>60</td>
<td>65</td>
</tr>
</tbody>
</table>
Spectral data of synthesised compounds (Si-v)

Si.1-(4-piperazinyl benzyl) 2-phenyl 5-methyl benzimidazole.

(1R (cm-1): 3066(Ar-CH=), 2920, (alkyl-C=H), 1600-1420 (C=C), 1634(C=N).

1H NMR (DMSO-d6) δ ppm: δ 6.82 (d, 2H, aromatic), 6.98 (d, 2H, aromatic), 7.06 (t, 1H, aromatic), 7.28 (m, 2H, aromatic), 7.52 (m, 2H, aromatic), 5.5 (s, 2H, -benzyl-CH3), 2.32 (s, 3H, Ar-CH3).

Si.1-(N-methyl piperazinyl) benzyl] 2-phenyl 5-methyl benzimidazole.

(1R (cm-1): 3066(Ar-C=H), 2920(alkyl-C=H), 1600-1420 (C=C), 1634(C=N).

1H NMR (DMSO-d6) δ ppm: δ 6.82 (d, 2H, aromatic), 6.98 (d, 2H, aromatic), 7.06 (t, 1H, aromatic), 7.28 (m, 2H, aromatic), 7.52 (m, 2H, aromatic), 5.5 (s, 2H, -benzyl-CH3), 2.32 (s, 3H, Ar-CH3).

Si.1-(4-(N-methyl piperazinyl) benzyl] 2-phenyl 5-methyl benzimidazole.

(1R (cm-1): 3066(Ar-C=H), 2920(alkyl-C=H), 1600-1420 (C=C), 1634(C=N).

1H NMR (DMSO-d6) δ ppm: δ 6.82 (d, 2H, aromatic), 6.98 (d, 2H, aromatic), 7.06 (t, 1H, aromatic), 7.28 (m, 2H, aromatic), 7.52 (m, 2H, aromatic), 5.5 (s, 2H, -CH3-benzyl), 2.32 (s, 3H, Ar-CH3).

Si.1-(4-(N-ethyl piperazinyl) benzyl] 2-phenyl 5-methyl benzimidazole.

(1R (cm-1): 3066(Ar-C=H), 2920(alkyl-C=H), 1600-1420 (C=C), 1634(C=N), 790(C=Cl).

1H NMR (DMSO-d6) δ ppm: δ 6.82 (d, 2H, aromatic), 6.98 (d, 2H, aromatic), 7.06 (t, 1H, aromatic), 7.28 (m, 2H, aromatic), 7.52 (m, 2H, aromatic), (s, 2H, -CH3-benzyl).

Si.1-(4-(N-ethyl piperazinyl) benzyl] 2-phenyl 5-chloro 6-methyl benzimidazole.

(1R (cm-1): 3066(Ar-C=H), 2920(alkyl-C=H), 1600-1420 (C=C), 1634(C=N), 790(C=Cl).

1H NMR (DMSO-d6) δ ppm: δ 6.82 (d, 2H, aromatic), 6.98 (d, 2H, aromatic), 7.06 (t, 1H, aromatic), 7.28 (m, 2H, aromatic), 7.52 (m, 2H, aromatic), (s, 2H, -CH3-benzyl).

Si.1-(4-(N-ethyl piperazinyl) benzyl] 2-phenyl 5-chloro 6-methyl benzimidazole.

(1R (cm-1): 3066(Ar-C=H), 2920(alkyl-C=H), 1600-1420 (C=C), 1634(C=N), 790(C=Cl).

1H NMR (DMSO-d6) δ ppm: δ 6.82 (d, 2H, aromatic), 6.98 (d, 2H, aromatic), 7.06 (t, 1H, aromatic), 7.28 (m, 2H, aromatic), 7.52 (m, 2H, aromatic), (s, 2H, -CH3-benzyl).

CONCLUSION

In present methodology we have developed a simple, short and efficient method for the synthesis of 1, 2 disubstituted benzimidazole derivatives from aromatic amines and benzoic acid in a two-step procedure using sodium acetate as catalyst and achieved reaction products in good yield. Sodium acetate served as a good catalyst by providing mild reaction conditions, good yield of products and was easily removed from the reaction mixture. 5 benzimidazole derivatives were prepared and characterisation of synthesised compounds was achieved by IR and 1H NMR spectroscopic methods. In future, the synthesised derivatives may serve as potent medicinal agents with significant biological activity.

REFERENCES


Cite this article as:

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.