Research Article

PANCREATIC PROTECTIVE AND THERAPEUTIC EFFECT OF ARACHIS HYPOGAEA SKIN EXTRACTS AGAINST CARBON TETRACHLORIDE (CCL₄) IN MICE

Ahmed H. AL-Azawi * and Hawazen H. Salih
Biotechnology Dept., Genetic Engineering and Biotechnology Institute for post graduate studies. University of Baghdad, Baghdad, Iraq

*Corresponding Author Email: ahmedharbi1977@gmail.com

Article Received on: 15/12/18 Approved for publication: 19/03/19

DOI: 10.7897/2230-8407.1004120

ABSTRACT

The aim of this investigation was to assess the influence of peanut (Arachis hypogaea) skin extracts on pancreatic protective and therapeutic effects and reduce the level of blood glucose on laboratory animals damaged by Carbon Tetrachloride (CCL₄). The study began with the collection of seed coats, maceration and Soxhlet apparatus were used to prepare aqueous and methanolic extracts respectively, phytochemical detection, and acute toxicity of peanut skin extracts and antidiabetic testing of male mice with the carbon tetrachloride (CCL₄). Forty male albino mice were randomly divided into ten groups of four animals each. The experiment was conducted in two methods: pre-treatment groups and post-treatment groups. The results showed that the serum blood glucose level was significantly increased (p <0.01) in the CCL₄ treated group (group 2) of mice (172.00 ± 2.08 mg/dl) compared with the control group (group 1) (101.43 ± 2.02 mg/dl) indicating the induction of severe pancreatic toxicity. The best effect in the level of serum blood glucose was in methanolic treated groups 100 mg/kg (Group 4 and 8) (107.10 ± 1.75 mg/dl) respectively in both pre and post-treatment when compared with the control group. The histopathological examination of pancreas obtained from mice with administrated CCL₄ showed fatty changes in the cells of islet and depletion of secretion, while when treated with 100 mg/kg of methanolic extract revealed the islets of pancreas look like normal structure appearance.

Keywords: Arachis hypogaea L., pancreatic protective, blood glucose level, CCL₄.

INTRODUCTION

Diabetes mellitus is still one of the most important causes of death and disability in both developed and developing countries. Diabetes mellitus is a metabolic disorder affecting the body’s ability to make or utilize insulin, a pancreatic hormone that helps transport glucose (blood sugar) from the bloodstream into the cells so they can break it down and use it for fuel. The disease results in abnormal levels of glucose in the bloodstream. Hyperglycemia, increased water intake and polyuria are the main indication of diabetes mellitus. Free radicals, produced by carbon tetrachloride (CCL₄), have been widely used to induce insulin deficiency in experimental animals and cause necrosis of pancreatic b-cells. The induction of CCL₄ leads to increase in the generation of reactive oxygen species (ROS) inhibits free radical scavengers and causes lipid peroxidation and DNA damage. Antioxidants play an important role in preventing or, in most cases, limiting the damage caused by free radical. Healthy people and animals possess many endogenous antioxidative substances that scavenge free radicals in vivo to maintain the redox balance and genome integrity. Phytochemicals have always been an important source of remedies for human health problems. Numerous experimental and clinical studies have documented beneficial effects of phytotherapy for managing diabetes. Peanuts are as rich in antioxidants as many fruits. Peanut is a dietary source of biologically active polyphenols such as the stilbene, trans-resveratrol, flavonoids such as the proanthocyanidins, and flavonols such as quercetin. Most of the antioxidants are located in the skin of peanuts.

MATERIALS AND METHODS

Chemicals

All chemicals used for extraction and detection of plant were analytical grade and were obtained from Sigma/Aldrich Chemical Company, St. Louis MO, USA. Standard Kit for assay the serum level of glucose purchased from (Cecil, Spain).

Plant material

Raw peanut pods were purchased from the local market in Baghdad city and classified as Arachis hypogaea L. by the herbarium of the Biology Department, College of Science, University of Baghdad. Pods were manually shelled, and the seed coats were collected from the raw peanut kernels. The seed coats were ground using a grinder and stored at -20°C for future analysis.

Preparation of aqueous extract

Water extract was prepared according to N’Guessan et al. Macerated 100 gram of peanut skin in 1000 ml of distilled water for 72 hours, after extraction, the mixture was vacuum filtered through Whittman No.1 paper and the filtrate were dried at 50°C by a rotary evaporator. The resulting extract stored in amber glass vials at 4°C until analyzed. The whole process was completed under dim light to minimize light induced degradation of phenolics, which are generally light sensitive.
Preparation of methanolic extract

Soxhelt apparatus was used to prepare methanolic extract. 50 grams of peanut skin was put in a thimble and 350 ml of methanol was added within 40-60 °C for 6 hours. The solution has been filtered through a filter paper Whitman No.1 and evaporated to dryness under vacuum at 40°C; the dried extract have been weighed and stored in amber glass vials at 4°C until analyzed 12.

General chemical detection methods

Methanolic and aqueous extracts were tested for the presence of the phytoconstituents according to the following standard tests to detected flavonoids, phenols, alkaloids, tannins, glycosides and saponin 13, 14.

Acute toxicity test

The acute toxicity of peanut skin extracts was tested in mice, which were dosed in a stepwise procedure using the fixed doses of 100–2000 mg/kg orally according to the OECD guideline No. 420 15. The animals were fasted overnight and then received peanut skin extracts. The animals were then observed for 3 hours for general behavioral, neurological, and autonomic profiles and every 30 min for the next 3 hours h and finally for mortality after 24 hours.

Experimental animals

Forty male albino mice weighing 35 ± 5 g were obtained from Biotechnology Research Center, AL- Nahrain University. They were kept in standard conditions, the temperature about 22°C, 12 hours light/dark cycle. The animals were acclimatized for one week before starting the experiment. The experimental protocols were approved and carried out according to guidelines for the use and care of experimental animals.

Experimental design

The forty mice were randomly divided into ten groups of four animals each. The experiment was conducted in two methods: pre-treatment groups and post-treatment groups.

Group 1: This group served as a negative control in which the mice received normal feed and distilled water for 35 days

Group 2: This group was a positive control for CCl₄, which induce pancreas damage in mice. CCl₄ was solved in olive oil with ratio (1:3) (CCl₄: olive oil) at a dose of 3 ml/kg injected intraperitoneally (i.p.).

Group 3: This group was the pre-treatment group, in which the mice were administered with 50 mg/kg methanolic extract orally for 35 days and injected (i.p.) 3 ml/kg of CCl₄ and olive oil mixture on the 35 day.

Group 4: This group was the pre-treatment group, in which the mice were administered with 100 mg/kg methanolic extract orally for 35 days and injected (i.p.) 3 ml/kg of CCl₄ and olive oil mixture on the 35 day.

Group 5: This group was the pre-treatment group, in which the mice were administered with 50 mg/kg aqueous extract orally for 35 days and injected (i.p.) 3 ml/kg of CCl₄ and olive oil mixture on the 35 day.

Group 6: This group was the pre-treatment group, in which the mice were administered with 100 mg/kg aqueous extract orally for 35 days and injected (i.p.) 3 ml/kg of CCl₄ and olive oil mixture on the 35 day.

Group 7: This group was the post-treatment group in which the mice were injected (i.p.) 3 ml/kg of CCl₄ and olive oil mixture on the 1st day and received 50 mg/kg methanolic extract orally for 35 days.

Group 8: This group was the post-treatment group in which the mice were injected (i.p.) 3 ml/kg of CCl₄ and olive oil mixture on the 1st day and received 100 mg/kg methanolic extract orally for 35 days.

Group 9: This group was the post-treatment group in which the mice were injected (i.p.) 3 ml/kg of CCl₄ and olive oil mixture on the 1st day and received 100 mg/kg aqueous extract orally for 35 days.

Group 10: This group was the post-treatment group in which the mice injected (i.p.) with 3 ml/kg of CCl₄ and olive oil mixture on the 1st day and received 100 mg/kg aqueous extract orally for 35 days.

Collection of blood

Blood samples were collected at the end of the experiment; the mice were anesthetized with the injection of 200 μl (160 μl ketamine 10% + 40 μl xylazine) of anesthesia agent. Then their abdominal areas were opened, and the blood samples were directly taken from their hearts. The blood sample was rocked slightly and centrifuged at 3000 rpm for 5 minutes. The serum was then stored in the freezer at -21°C until analyzed 16.

Histopathological examination

At the end of the experimental period (35 days), mice were anesthetized and sacrificed; the pancreas of different groups was removed and kept in 10% formaldehyde solution; stained with hematoxyline and eosin (H&E) for histological examination 17.

Statistical Analysis

The statistical analysis system program was using to study different parameters. LSD test was used to significant compare between means in this study 18.

RESULTS AND DISCUSSION

Phytochemical detection of Arachis hypogaea skin extracts

The phytochemicals detection results are shown in (Table 1) which indicates the presence of flavonoids, phenols, alkaloids, tannins and glycosides in methanolic extract, while alkaloids gave a negative test in aqueous extract. Arachis hypogaea skin extracts showed contains a number of phytochemicals such as flavonoids and other polyphenols 19. Moreover, earlier study revealed the presence of flavonoids; phenols and coumarins in methanolic extract and the other phytocompounds tannin, saponin, alkaloids were present in trace amounts 20.

Acute Toxicity of Arachis hypogaea Skin Extracts

The study of acute toxicity of Arachis hypogaea skin extracts shows different signs when treated with different oral doses of aqueous and methanolic extract (Table 2). The experimental mice show appreciable changes in physical activity and shown abnormal responses such as Tacky cardiace, increase breathing, sedation and animal tend to loneliness for one side in different
time in dose 2000 mg/kg, but there is no mortality in mice were recorded after 24 hours post treatment. The results showed that the aqueous and methanolic skin extracts of *Arachis hypogaea* practically non toxic according to Hodge and Sterner \(^{25}\) as shown in (Table 3). Toxicity tests are not designed to study the safety of these plants, but to point the toxic effects that can produce \(^{25}\), but to determine the safety margin of the extract. Accordingly, to this study, both extracts of *Arachis hypogaea* extract did not induce lethality in mice when administered orally at doses of began from 100 till reach to 2000 mg/kg. This result suggests that LD50 of the extract would be greater than 2000mg/kg \(^{23}\). Therefore, the plant extract can be assumed practically non-toxic \(^{24}\).

Effects of peanut skin extracts on blood glucose level in mice

The serum blood glucose level was significantly increased (p <0.01) in the CCl\(_4\) treated group (group 2) of mice (172.00 mg/dl) compared with the control group (group 1) (101.43 mg/dl) indicating the induction of severe pancreatic toxicity. Yavar et al. \(^{25}\) observed that CCl\(_4\) injection significantly increases blood glucose level in damaged rats. It has been reported that excess cellular ROS can cause the perturbations in mitochondrial function and play a role in the pathogenesis of diabetes complications \(^{26}\). The generation of ROS in response to the high concentrations of glucose may also cause mitochondrial dysfunction and trigger b-cells apoptosis \(^{27}\). The elevation of glucose level could be by decreasing the pancreatic secretion of insulin from β-cells of islets of langerhans because of fatty changes in the cells of islet resulting from the toxicity of CCl\(_4\).

The first method (pre-treatment) Treatment with methanolic extract 50 mg/kg (Group 3) showed significant decrease (p < 0.01) in concentrations of serum blood glucose level (112.60 mg/dl) compared with the CCl\(_4\) treated group. The best effect in the level of serum blood glucose was in methanolic treated groups 100 mg/kg (Group 4) (104.27 mg/dl) when compared with the control group as shown in (Table 4). Furthermore, the levels of serum blood glucose were significantly decrease (p < 0.01) in concentrations 50 and 100 mg/kg (Group 5 and 6) (122.63 and 111.93 mg/dl) respectively when compared with the CCl\(_4\) treated group. Phytochemicals have always been an important source of remedies for human health problems. Numerous experimental and clinical studies have documented beneficial effects of phytotherapy for managing diabetes\(^7\). Antidiabetic effect of phytochemicals is mediated through different mechanisms such as decreasing glucose absorption from intestine, inhibiting glucose production in the liver, increasing glucose uptake by tissues, enhancing insulin secretion from beta cells, and/or increasing pancreatic tissue regeneration \(^{28-30}\).

The second method was the post-treatment, the results showed significant decrease (p < 0.01) in concentrations of serum blood glucose level (117.67 and 107.10 mg/dl) when treatment with methanolic extract 50 and 100 mg/kg (Group 7 and 8) respectively compared with the CCl\(_4\) treated group. Furthermore, treatment with aqueous extract 50 and 100 mg/kg (Group 9 and 10) showed significant decrease (p < 0.01) in concentrations of serum blood glucose level (125.86 and 115.06 mg/dl) respectively when compared with the CCl\(_4\) treated group.

Hundreds of plants that have been investigated for diabetes, a small fraction have shown the regenerative property, however, the number of studies supporting their beneficial effects on pancreas is not enough. Only *A. sativum*, *A. indica*, *berberine*, *C. sativus*, *G. sylvester*, *J. regia*, *M. charantia*, and *N. sativa* had more than one piece of evidence for their regenerative property so that their consumption may decrease insulin dependence on diabetic patients. The antioxidant property of phytochemicals may in part mediate their protective action against pancreatic beta cell apoptosis. Regardless of the molecular mechanisms, it seems that patients at the earliest stages of diabetes can be treated with these plants to delay or prevent the full destruction of pancreatic islets \(^{31}\).

AL-Azawi et al., \(^{32}\) mention that peanut (*Arachis hypogaea* L.) skin extracts showed strong presence of phenolic compounds. Also, it exhibited strong antioxidant activity in the DPPH assays, and suggests the peanut skin extracts can be potentially used as a source of natural antioxidant agents. Peanut skins contain bioactive phenolic compounds including catechins and proanthocyanidins \(^{33,34}\). The ability of the anthocyanins to induce insulin secretion is in the increasing order of pelargonidin-3-galactoside, cyanidin-3-glucoside, and delphinidin-3-glucoside. This finding demonstrates that the number of hydroxyl groups on the B-ring of anthocyanins plays a crucial role in their ability to secrete insulin \(^{31}\). Some previous studies have shown that Tanacetum Parthenium Extract (TPE) has antidiabetic and antihyperglycemic effects \(^{25}\). In assaying the effect of TPE on blood glucose, it was observed that CCl\(_4\) injection significantly increases blood glucose level in damaged rats. In addition, administration of TPE in pretreatment groups prevented hyperglycemic effects of CCl\(_4\).

Histopathological evaluation of peanut skin extracts on pancreas samples

The light microscopic examination obtained from the fragments of pancreas of the animals that were not exposed to CCl\(_4\), but were given standard food (group 1) showed normal structure appearance of islet's cells of pancreas (Figure 1). The pancreas of CCl\(_4\) intoxicated mice (group 2) showing fatty changes in the cells of islet and depletion of secretion (Figure 2).

Oxidative stress term is used to describe an imbalance between the systemic manifestation of free radicals and capability of cells to detoxify them and negate their damaging effects on proteins, lipid, and Deoxyribonucleic acid (DNA) \(^{34}\). Some chemicals or drugs can cause liver and kidney damage such as carbon tetrachloride (CCl\(_4\)), acetaminophen and cisplatin \(^{35}\). CCl\(_4\) by itself does not have cytotoxic effects on the liver, but its metabolites CCl\(_3\) and OCCl\(_3\) in hepatic parenchyma cells formed by cytochrome P450-dependent mono-oxygenases are responsible for the hepatotoxicity \(^{37}\). The results of the present experiment are in agreement with Andritioiu et al. \(^{38}\) demonstrates that the administration of CCl\(_4\) leads to severe acute liver, spleen, pancreas in laboratory animals. In animals chronically exposed to CCl\(_4\), unequal islets of Langerhans can be observed at the level of the pancreatic tissue, some of them hypertrophied, while in the peripancreatic adipose tissue, liponecrosis, is present.

The pre-treatment groups (group 3, 4, 5 and 6) in which the mice were administered with peanut skin extract orally for 35 days and injected (i.p.) 1.5 mg/kg of CCl\(_4\) on the 35 day. The results showed glandular cells hypertrophy with few apoptotic cells changes when treated with 50 mg/kg methanolic extract of peanut (group 3) (Figure 3A), while in group 4 the result showed normal structure appearance of endocrine cells when treated with 100 mg/kg methanolic extract (Figure 3B). In group 5 treated with 50 mg/kg water extract showing high numbers of apoptotic cells changes of endocrine cells (Figure 3C), while in 100 mg/kg of peanut skin water extract (group 6) showed look like normal structure with rare apoptotic cells changes when treated with 50 and 100 mg/kg (Group 5 and 6) (Figure 3D). The post-treatment groups (group 7, 8, 9 and 10) in which the mice were injected (i.p.) 1.5 mg/kg of CCl\(_4\) the 1st day and received peanut skin extract for 35 day. The results showed look like normal appearance but with congestion and apoptotic cells
changes when treated with 50 mg/kg methanolic extract of peanut (group 7) (Figure 4 A). However, in group 8 (treated with 100 mg/kg methanolic extract) the islet's of pancreas look like normal structure appearance (Figure 4 B). The histopathological section in the pancreas of mice treated with 50 mg/kg water extract (group 9) showing few apoptotic cells changes (Figure 4 C), while in 100 mg/kg of peanut skin water extract (group 10) the result showed look like normal structure appearance of islet's of langerhans as shown in (Figure 4 D).

Veghelyi et al. 39 mention that a single subcutaneous dose of carbon tetrachloride (CCl₄) in rodents was shown to cause lesions of chronic pancreatitis in advance of liver lesions, and which could be “altered at will” to yield a spectrum from the patchy lesions of chronic pancreatitis with or without concretions, through to ‘pancreatic cirrhosis’ or ‘cystic fibrosis’. Protection against oxidative damage caused by excessive reactive oxygen species (ROS) is essential for the health of tissues 40. Khan et al. 41 evaluated the methanol extract of Launaea procumbens (LPME) against carbon tetrachloride (CCl₄) induced pancreatic oxidative damage and hyperglycemia in mice and suggest that LPME effectively protects the liver and pancreas against the CCl₄ induced oxidative damage in rats, possibly through antioxidant and/or free radical scavenging effects of flavonoids and phenolic compounds in the extract. Some previous findings have indicated that the flavonoids substances in the plants have antioxidant and antidiabetic effects 42. Considering the fact that many plants are rich with flavonoids and phenolic compounds, it seems that the observed effects are related to the return of antioxidant enzymes to normal levels or the prevention of severe damage to liver or pancreas 43. Arachis hypogaea skin extracts might exert its effects by preventing the destruction and maintains pancreas tissue via neutralizing ROS. The histopathological results demonstrated the benefit of peanut skin extracts on reducing the toxicity of CCl₄ in pancreas of laboratory animals.

Table 1: Phytochemical detection of Arachis hypogaea skin extracts

<table>
<thead>
<tr>
<th>Phytochemical compound</th>
<th>Aqueous Extract</th>
<th>Methanolic Extract</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavonoids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenols</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferric chloride</td>
<td>+</td>
<td>+</td>
<td>yellow color</td>
</tr>
<tr>
<td>Lead acetate</td>
<td>+</td>
<td>+</td>
<td>bluish green color</td>
</tr>
<tr>
<td>Alkaloids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wagner's test</td>
<td>-</td>
<td>+</td>
<td>reddish brown precipitate</td>
</tr>
<tr>
<td>Meyer's test</td>
<td>-</td>
<td>+</td>
<td>reddish brown precipitate</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>+</td>
<td>White precipitate</td>
</tr>
<tr>
<td>Glycosides</td>
<td>+</td>
<td>+</td>
<td>violet ring</td>
</tr>
<tr>
<td>Saponin</td>
<td>+</td>
<td>-</td>
<td>thick foam</td>
</tr>
</tbody>
</table>

(+) Positive, (-) negative.

Table 2: Acute toxicity and mortality rate of Arachis hypogaea skin extracts

<table>
<thead>
<tr>
<th>Dose of extract mg/kg B.W</th>
<th>No. of mice per group</th>
<th>No. of dead / No. of animal</th>
<th>Sign of animal treated with extract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aqueous extract</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nil</td>
</tr>
<tr>
<td>100</td>
<td>6</td>
<td>0/6</td>
<td>Nil</td>
</tr>
<tr>
<td>250</td>
<td>6</td>
<td>0/6</td>
<td>Nil</td>
</tr>
<tr>
<td>500</td>
<td>6</td>
<td>0/6</td>
<td>Tacky cardiac, increase breathing, sedation and animal tend to loneliness for one side in different time</td>
</tr>
<tr>
<td>1000</td>
<td>6</td>
<td>0/6</td>
<td>Tacky cardiac, increase breathing, sedation and animal tend to loneliness for one side in different time but it take long time than above</td>
</tr>
<tr>
<td>2000</td>
<td>6</td>
<td>0/6</td>
<td>Tacky cardiac, increase breathing, sedation and animal tend to loneliness for one side in different time but it take long time than above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Methanolic extract</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nil</td>
</tr>
<tr>
<td>100</td>
<td>6</td>
<td>0/6</td>
<td>Interrupted sedation</td>
</tr>
<tr>
<td>250</td>
<td>6</td>
<td>0/6</td>
<td>Tacky cardiac, shallow breathing and those signs are very clear</td>
</tr>
<tr>
<td>500</td>
<td>6</td>
<td>0/6</td>
<td>Tacky cardiac, titanic hair skin, animal tend to loneliness for one side in different time</td>
</tr>
<tr>
<td>1000</td>
<td>6</td>
<td>0/6</td>
<td>Tacky cardiac, titanic hair skin, animal tend to loneliness for one side in different time all these signs take long time than above</td>
</tr>
<tr>
<td>2000</td>
<td>6</td>
<td>0/6</td>
<td>Tacky cardiac, titanic hair skin, animal tend to loneliness for one side in different time all these signs take long time than above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nil</td>
</tr>
<tr>
<td>1 ml/kg D.W</td>
<td>6</td>
<td>0/6</td>
<td>B.W = Body weight, D.W = Distil water</td>
</tr>
</tbody>
</table>

Table 3: Hodge and Sterner toxicity scale

<table>
<thead>
<tr>
<th>No.</th>
<th>Term</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Extremely Toxic</td>
<td>Less than 1 mg/kg</td>
</tr>
<tr>
<td>2</td>
<td>Highly Toxic</td>
<td>1 - 50 mg/kg</td>
</tr>
<tr>
<td>3</td>
<td>Moderately Toxic</td>
<td>50 - 500 mg/kg</td>
</tr>
<tr>
<td>4</td>
<td>Practically Non-Toxic</td>
<td>500 - 5000 mg/kg</td>
</tr>
</tbody>
</table>
Table 4: Effect of peanut skin extracts on blood glucose level

<table>
<thead>
<tr>
<th>Groups</th>
<th>Glucose level (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>101.43 ± 2.02 e</td>
</tr>
<tr>
<td>Group 2</td>
<td>172.00 ± 2.08 a</td>
</tr>
<tr>
<td>Pre-treatment groups</td>
<td></td>
</tr>
<tr>
<td>Group 3</td>
<td>112.60 ± 1.64 c</td>
</tr>
<tr>
<td>Group 4</td>
<td>104.27 ± 2.07 d</td>
</tr>
<tr>
<td>Group 5</td>
<td>122.63 ± 2.16 b</td>
</tr>
<tr>
<td>Group 6</td>
<td>111.93 ± 1.17 c</td>
</tr>
<tr>
<td>LSD value</td>
<td>5.833 **</td>
</tr>
<tr>
<td>Post-treatment groups</td>
<td></td>
</tr>
<tr>
<td>Group 7</td>
<td>117.67 ± 0.92 c</td>
</tr>
<tr>
<td>Group 8</td>
<td>107.10 ± 1.75 d</td>
</tr>
<tr>
<td>Group 9</td>
<td>125.86 ± 1.12 b</td>
</tr>
<tr>
<td>Group 10</td>
<td>115.06 ± 1.77 c</td>
</tr>
<tr>
<td>LSD value</td>
<td>5.142 **</td>
</tr>
</tbody>
</table>

** (P<0.01). Means having with the different letters in same column differed significantly.

Figure (1): Normal structure appearance of islet’s cells of pancreas (H&E stain 400 X).

Figure (2): Section showing fatty changes in the cells of islet and depletion of secretion (H&E stain 400 X).

Figure (3): (A) Section showing glandular cells hypertrophy with few apoptotic cells changes; (B) Section showing normal structure appearance of endocrine cells; (C) Section showing high numbers of apoptotic cells changes of endocrine cells; (D) Section showing look like normal structure with rare apoptotic cells changes (H&E stain 400 X).
CONCLUSION

Arachis hypogaea skin extracts showed contains a number of phytochemicals. The phenolic compounds are the major components of these extracts and the antioxidant properties were attributed to them. The findings of this study showed that methanolic and aqueous extracts of Arachis hypogaea L. can protect pancreas and decrease the level of blood glucose for laboratory animals against damages induced by free radicals which are produced as the result of CCl₄ metabolism.

ACKNOWLEDGEMENT

This work was supported by Biotechnology department, Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad.

REFERENCES

42. Aboelnaga SM. Effect of some levels of cardamom, clove and Black pepper (Singhania) on dogs. Daru 2005–4; 18: 51-6.

Cite this article as:

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.