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ABSTRACT 
 
3,3-disubstituted oxindole derivatives were synthesised by treating isatins with electron rich benzene derivatives at room temperature by using BF3O(Et)2 
as catalyst which reduced the synthesis time. The compounds were evaluated for cytotoxic activity against human breast cancer cells (MCF7) and 
human ovarian carcinoma cells (SKVO3) by using MTT assay. Compounds 1(7.2±0.22μM and 11.80.21±μM), 2(7.10.24±μM and 9.8±0.27μM), 
exhibited relatively higher cytotoxic activity against both MCF7 and SKVO3 cell lines, respectively.  
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INTRODUCTION 
 
Cancer is characterised by a change in controlled mechanisms 
that manage cell proliferation, differentiation and is continuing to 
be a major health problem in developing as well as undeveloped 
countries. Malignancy is caused by abnormalities in cells, which 
might be due to inherited genes or caused by exogenous agents 
including chemicals, radiation and some infectious agents 1.  
 
Organic compounds with an oxindole framework are represented 
in a large family of a pharmaceutically active compounds and 
bioactive natural products. Particularly, spirooxindole and 3, 3-
disubstituted derivatives were present in a number of alkaloids 
which possess significant biological activities. Such as 
anticancer2, antidepressant3, anticonvulsant4, antifungal5, anti-
HIV 6, anti-inflammatory7. During past decades, researchers have 
embarked on the development of new oxindole based anticancer 
agents8-10. 5-fluoro-3-substituted-2-oxoindole derivative 
compound SU11248 [Sutent] received FDA approval for the 
treatment of gastrointestinal stromal tumors and advanced renal 
cell carcinoma11. Due to the importance of oxindole motifs, 
several methods have been developed for the construction such 
structural motifs12-19. Despite of effectiveness, these methods 
involve use of expensive catalysts20-22, long reaction time16,17,19,23, 
tedious work up, vigorous reaction conditions15 and poor yield19. 
Therefore there is need to develop efficient, convenient and 
practical protocol to synthesize oxindole scaffolds. 
 
In the present investigation, we have developed a rapid and 
efficient method for synthesis of methoxy benzene substituted 
oxindoles using boron trifluoride diethyl etherate as catalyst. The 
newly synthesized 3,3-disubstited oxindole are evaluated for their 
cytotoxic potentials against wild type human breast cancer cell 
line (MCF7) and human ovarian carcinoma cells (SKVO3). 
 
 
 

MATERIALS AND METHODS 
  
Chemistry 
 
All the starting materials procured from Sigma Aldrich and used 
without further purification.  Solvents were of analytical grade. 
All the reactions were carried out with the use of standard 
techniques and were monitored by analytical TLC performed on 
pre-coated silica. 
 
General procedure for synthesis of 3,3-disubstituted 
oxindoles 
 
To 1.0 equivalent of isatin 1.5 equivalent of tri and di methoxy 
benzene was added in DCM in a RBF, stirred it for 2min, 0.2ml 
of [BF3O(Et)2] was added and stirred it for another 5-10 min 
(Scheme 1). Reaction was monitored by TLC, excess of reagent 
was quenched with solid sodium bicarbonate and directly loaded 
on to column. The structure of the compounds were confirmed by 
1H NMR, 13CNMR, IR and Mass-spectroscopy.  
Elemental analysis: Calculated: C, 70.71; H,5.34; N,8.25, Found 
: C,70.72; H,5.31; N,8.27 

 
5-chloro-3,3-bis(2,4,6-trimethoxyphenyl)indolin-2-one (1): 
Light red solid; Mp 180-182oC;1H NMR (300 MHz, CDCl3): d 
3.54 (s, 3H), 3.68 (s, 3H), 6.72 (s, 3H), 3.80 (s, 3H), 3.85 (s, 3H), 
3.88 (s, 3H), 5.14 (s, 1H), 6.09 (dd, J = 2.13 Hz and 8.39 Hz, 1H), 
6.20 (dd, J = 2.13 Hz and 5.95 Hz,  2H), 6.22 (d, J = 2.28 Hz, 
1H), 6.74 (s, 1H), 7.00 (s, 1H), 8.68 (br s, 1H) ppm. 13CNMR (75 
MHz, CDCl3): d42.5, 55.2, 55.3, 55.7, 55.9, 89.6, 89.8 90.6, 90.8, 
91.6, 105.7, 108.7, 109.9, 113.2, 124.3, 127.1, 128.0, 131.0, 
132.3, 139.8, 158.2, 158.3, 158.8, 159.3, 161.0, 180.1 ppm.IR 
(KBr): ν = 809, 1116, 1153, 1225, 1458, 1609, 1707, 2936 cm-1. 
MS-ESI: m/z = 500 [M+H]+, 522 [M+Na]+. Elemental analysis: 
Calculated: C,62.46; H,5.24; Cl,7.09; O,22.40, Found : C,62.44; 
H,5.23; Cl,7.08; O,22.40. 
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5-bromo-3,3-bis(2,4,6-trimethoxyphenyl)indolin-2-one (2): 
Light red solid; Mp 233-235 oC;1H NMR (300 MHz, CDCl3): d 
3.56 (s, 3H), 3.69 (s, 3H), 3.73 (s, 3H), 3.81 (s, 3H), 3.86 (s, 3H), 
3.88 (s, 3H), 5.14 (s, 1H), 6.08 (d, J = 6.02 Hz, 1H), 6.19-6.23 
(m, 3H), 6.73 (s, 1H), 7.18 (s, 1H), 8.01 (br s, 1H) ppm.13C NMR 
(75 MHz, CDCl3): d42.3,55.3, 55.7, 55.9, 90.6, 90.7, 91.6, 111.9, 
112.9, 127.4, 131.3, 134.5, 140.4, 158.1, 159.3, 161.0, 179.4 ppm. 
IR (KBr): ν = 782, 818, 1029, 1155, 1267, 1456, 1521, 1735, 3291 
cm-1.MS-ESI: m/z = 544 [M]+. Elemental analysis: Calculated: 
C,57.36; H,4.81; Br,14.68; N,2.57; O,20.57, Found: C, 57.37; 
H,4.83; Br,14.69; N,2.56; O,20.59. 
 
3,3-bis(2,4-dimethoxyphenyl)indolin-2-one (3): Light yellow 
solid;Mp 180-182 oC;1H NMR (300 MHz, CDCl3): d 3.46 (s, 3H), 
3.63 (s, 3H), 3.77 (s, 6H), 6.36 (d, J = 8.39 Hz, 1H), 6.40-6.48 
(m, 3H), 6.81 (t, J = 7.78 Hz, 2H), 6.88 (td, J = 0.91 Hz and 7.62 
Hz, 1H), 7.11 (td, J = 1.06 Hz and 7.62 Hz, 1H), 7.21 (d, J = 7.93 
Hz, 2H), 8.25 (br s, 1H) ppm. 13CNMR (75 MHz, CDCl3): d 55.1, 
55.2, 55.6, 59.2, 99.7, 100.1, 104.1, 104.2, 108.8, 120.2, 120.5, 
121.6, 125.2, 127.1, 125.5, 127.1, 129.6, 130.8, 135.3, 140.6, 
158.5, 158.9, 160.0, 180.9 ppm. IR (KBr): ν = 760, 1035, 1134, 
1210, 1310, 1468, 1609, 1709 cm-1. MS-ESI: m/z = 406 [M+H]+, 
428 [M+Na]+. Elemental analysis: Calculated: C,71.10; H,5.72; 
N,3.45; O,19.73, Found: C,71.12; H,5.74; N,3.44; O,19.75. 
 
5-chloro-3,3-bis(2,4-dimethoxyphenyl)indolin-2-one (4): 
Light yellow solid; Mp 152-154 oC;1H NMR (300 MHz, CDCl3): 
d 3.43 (s, 3H), 3.67 (s, 3H), 3.77 (s, 6H), 6.36-6.51 (m, 4H), 6.72 
(d, J = 8.24 Hz, 1H), 6.81 (d, J = 8.54 Hz, 1H), 7.01 (dd, , J = 
2.13 and 8.24 Hz, 1H), 7.23 (d, J = 8.54 Hz, 1H), 7.27 (d, J = 1.98 
Hz, 1H), 8.61 (br s, 1H) ppm.13CNMR (75 MHz, CDCl3): d 55.0, 
55.2, 55.5, 59.6, 99.8, 104.2, 104.4, 109.7, 118.9, 119.7, 125.8, 
126.8, 129.6, 130.9, 137.2, 139.3, 158.4, 158.6, 160.3, 180.9 ppm. 
IR (KBr): ν = 819, 1030, 1208, 1306, 1465, 1504, 1610, 1713, 
2934 cm-1. MS-ESI: m/z = 440 [M+H]+, 462 [M+Na]+. Elemental 
analysis: Calculated: C,65.53; H,5.04; Cl,8.06; N,3.18; O,18.19, 
Found: C,65.53; H,5.06; Cl,8.08; N,3.17; O,18.17. 
 
5-bromo-3,3-bis(2,4-dimethoxyphenyl)indolin-2-one (5): 
White solid; Mp 202-204 oC;1H NMR (300 MHz, CDCl3): d 3.43 
(s, 3H), 3.68 (s, 3H), 3.77 (s, 6H), 6.38 (d, J = 8.69 Hz, 1H), 6.44 
(d, J = 9.15 Hz, 2H), 6.48 (s, 1H), 6.81 (d, J = 8.69 Hz, 1H), 7.21 
(dd, J = 1.98 Hz, J = 8.24 Hz, 2H), 7.24 (d, J = 8.54 Hz, 1H), 7.41 
(d, J = 1.98 Hz, 1H), 8.62 (s, 1H) ppm.13CNMR (75 MHz, 
CDCl3): d 54.9, 55.3, 55.5, 59.6, 99.8, 104.2, 110.3, 114.3, 128.6, 
129.7, 131.0, 137.6, 139.8, 158.4, 158.6, 160.3, 180.7 ppm. IR 
(KBr): ν = 768, 812, 1021, 1144, 1263, 1451, 1515, 1724, 3288 
cm-1. MS-ESI: m/z = 484 [M+H]+, 506 [M+Na]+. Elemental 
analysis: Calculated: C,59.52; H,4.58; Br,16.50; N,2.89; O,16.52, 
Found: C,59.54; H,4.59; Br,16.50; N,2.87; O,16.54. 
 
3, 3-bis(2,4-dimethoxyphenyl)-5-methoxyindolin-2-one (6): 
White solid; Mp 110-112 oC;1H NMR (300 MHz, CDCl3): d 3.46 
(s, 3H), 3.66 (s, 3H), 3.68 (s, 3H), 3.77 (s, 6H), 6.36 (d, J = 8.69 
Hz, 1H), 6.43 (d, J = 8.54 Hz, 2H), 6.46 (s, 1H), 6.65 (dd, J = 2.59 
Hz, J = 8.39 Hz, 1H), 6.72 (d, J = 8.39 Hz, 1H), 6.82 (d, J = 8.54 
Hz, 1H), 6.90 (d, J = 2.44 Hz, 1H), 7.21 (d, J = 8.69 Hz, 1H), 8.16 
(br s, 1H) ppm. 13CNMR (75 MHz, CDCl3): d 55.1, 55.2, 55.6, 
59.8, 99.7, 100.0, 104.1, 104.3, 108.8, 111.5, 112.8, 120.1, 120.5, 
129.6, 130.8, 134.3, 136.9, 155.1, 158.5, 158.8, 160.0, 160.1, 
180.7 ppm. IR (KBr): ν = 731, 823, 1040, 1215, 1519, 1721, 3192 
cm-1. MS-ESI: m/z = 436 [M+H]+. Elemental analysis: 
Calculated: C,68.95; H,5.79; N,3.22; O,22.04, Found: C,68.97; 
H,5.77; N,3.23; O,22.06. 
 
3,3-bis(2,4-dimethoxyphenyl)-5-methylindolin-2-one (7): 
Light yellow solid;Mp 177-179 oC;1H NMR (300 MHz, CDCl3): 

d 2.21 (s, 3H), 3.48 (s, 3H), 3.63 (s, 3H), 3.77 (s, 6H), 6.36 (d, J 
= 8.39 Hz, 1H), 6.43 (d, J = 8.54 Hz, 1H), 6.45 (d, J = 2.44 Hz, 
2H), 6.70 (d, J = 7.78 Hz, 1H), 6.79 (d, J = 8.69 Hz, 1H), 6.92 (d, 
J = 8.69 Hz, 1H), 6.98 (s, 1H), 7.17 (d, J = 8.54 Hz, 1H), 8.16 (br 
s, 1H) ppm. 13CNMR (75 MHz, CDCl3): d 21.2, 55.1, 55.2, 55.7, 
59.2, 99.7, 100.2, 104.1, 104.3, 108.5, 120.5, 120.7, 126.3, 127.4, 
129.6, 130.7, 130.8, 135.1, 138.2, 158.4, 159.1, 159.8, 160.1, 
180.8 ppm.IR (KBr): ν = 727, 801, 1027, 1206, 1501, 1703, 3178 
cm-1. MS-ESI: m/z = 420 [M+H]+. Elemental analysis: 
Calculated: C, 71.58; H,6.01; N,3.34; O,19.07, Found: C,71.59; 
H,6.03; N,3.36; O,19.08.  
 
3,3-bis(3,4-dimethoxyphenyl)indolin-2-one (8): White solid; 
Mp 178-180 oC;1H NMR (300 MHz, CDCl3): d 3.75 (s, 6H), 3.84 
(s, 6H), 6.77 (d, J = 7.17 Hz, 4H), 6.85 (s, 2H), 6.96 (br d, J = 
7.78 Hz, 1H), 7.06 (td, J = 0.96 Hz, J = 7.62 Hz, 1H), 7.20 (br d, 
J = 7.17 Hz, 1H), 7.24 (td, J = 1.22 Hz,  J = 7.78 Hz, 1H), 8.38 
(br s, 1H) ppm. 13CNMR (75 MHz, CDCl3): d 55.8, 55.9, 62.0, 
110.1, 110.6, 111.9, 120.6, 122.7, 126.1, 128.1, 133.8, 139.8, 
148.3, 148.7, 180.0 ppm.IR (KBr): ν = 760, 1018, 1153, 1258, 
1514, 1614, 1716, 3294 cm-1. MS-ESI: m/z = 406 [M+H]+, 428 
[M+Na]+. Elemental analysis: Calculated: C, 71.10; H,5.72; 
N,3.45; O,19.73, Found: C,71.10; H,5.74; N,3.44; O,19.75. 
 
5-chloro-3,3-bis(3,4-dimethoxyphenyl)indolin-2-one (9): 
Light yellow solid; Mp 185-187 oC;1H NMR (300 MHz, CDCl3): 
d 3.76 (s, 6H), 3.85 (s, 6H), 6.73 (dd, J = 2.13 and J = 8.39 Hz, 
2H),  6.78 (d, J = 8.39 Hz, 2H), 6.83 (d, J = 1.98 Hz, 2H), 6.89 
(d, J = 8.24 Hz, 1H), 7.15 (d, J = 1.98 Hz, 1H), 7.21 (dd, J = 1.98 
Hz, J = 8.24 Hz, 1H), 8.98 (br s, 1H)  ppm. 13CNMR (75 MHz, 
CDCl3): d 55.8, 55.9, 62.3, 110.7, 111.3, 111.8, 120.4, 126.3, 
128.0, 128.2, 133.0, 135.6, 138.5, 148.6, 148.9, 180.0 ppm. IR 
(KBr): ν = 821, 1027, 1221, 1315, 1470, 1521, 1623, 1715, 2951 
cm-1. MS-ESI: m/z = 440 [M+H]+. Elemental analysis: 
Calculated: C,65.53; H,5.04; Cl,8.06; N,3.18; O,18.19, Found: 
C,65.55; H,5.07; Cl,8.08; N,3.19; O,18.17. 
 
5-bromo-3,3-bis(3,4-dimethoxyphenyl)indolin-2-one (10): 
White solid; Mp 181-183 oC;1H NMR (300 MHz, CDCl3): d3.76 
(s, 6H), 3.85 (s, 6H), 6.73 (dd, J = 2.13 Hz, J = 8.39 Hz, 2H), 6.79 
(d, J = 8.39 Hz, 2H), 6.83 (d, J = 2.13 Hz, 2H), 6.85 (s, 1H), 7.28 
(d, J = 1.98 Hz, 1H), 7.36 (dd, J = 1.98 Hz, J = 8.24 Hz, 1H), 8.91 
(br s, 1H) ppm. 13C NMR (75 MHz, CDCl3): d55.8, 55.9, 62.2, 
110.7, 111.8, 115.3, 120.4, 129.1, 131.1, 133.0, 135.9, 139.0, 
148.6, 148.9, 179.9 ppm. IR (KBr): ν = 765, 810, 1022, 1140, 
1262, 1465, 1513, 1721, 3280 cm-1. MS-ESI: m/z = 483 [M]+, 485 
[M+2H]+. Elemental analysis: Calculated: C, 59.52; H,4.58; 
Br,16.50; N,2.89; O16.52, Found: C,59.54; H,4.59; Br,16.51; 
N,2.87; O16.54. 
 
3,3-bis(3,4-dimethoxyphenyl)-5-methoxyindolin-2-one (11): 
Yellow solid;Mp 180-182 oC;1H NMR (300 MHz, CDCl3): d 3.74 
(s, 3H), 3.76 (s, 6H), 3.85 (s, 6H), 6.77 (s, 6H), 6.85 (s, 3H), 8.19 
(br s, 1H) ppm. 13CNMR (75 MHz, CDCl3): d 55.7, 55.8, 55.9, 
62.4, 110.4, 110.7, 112.0, 112.6, 113.3, 120.6, 113.2, 113.8, 
135.3, 148.4, 148.8, 155.8, 179.8 ppm. IR (KBr): ν = 721, 810, 
1032, 1212, 1502, 1713, 3181 cm-1.MS-ESI: m/z = 436 [M+H]+. 
Elemental analysis: Calculated: C, 68.95; H, 5.79; N, 3.22; O, 
22.04, Found: C,68.97; H,5.77; N,3.23; O,22.06. 
 
3,3-bis(3,4-dimethoxyphenyl)-5-methylindolin-2-one (12): 
Light yellow solid; Mp 170-172 oC;1H NMR (300 MHz, CDCl3): 
d 2.30 (s, 3H), 3.76 (s, 6H), 3.85 (s, 6H), 6.74-6.79 (m, 4H), 6.83-
6.87 (m, 3H), 6.98 (s, 1H), 7.03 (d, J = 7.78 Hz, 1H), 8.50 (br s, 
1H) ppm.13CNMR (75 MHz, CDCl3): d 21.2, 55.7, 55.9, 62.1, 
109.9, 110.6, 112.0, 120.6, 126.6, 128.5, 132.1, 133.9, 137.4, 
148.3, 148.7, 180.2 ppm.IR (KBr): ν = 729, 804, 1031, 1201, 
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1505, 1716, 3181 cm-1. MS-ESI: m/z = 420 [M+H]+. Elemental 
analysis: Calculated: C, 71.58; H, 6.01; N,3.34; O,1907, Found: 
C,71.59; H,6.03; N,3.36; O,19.09. 
 
3,3-bis(2,5-dimethoxyphenyl)indolin-2-one (13): Light yellow 
solid; Mp 238-240 oC;1H NMR (300 MHz, CDCl3): d 3.45 (s, 
3H), 3.58 (s, 3H), 3.64 (s, 3H), 3.69 (s, 3H), 6.51 (d, J = 2.74 Hz, 
1H), 6.75-6.79 (m, 2H), 6.80-6.86 (m, 3H), 6.87 (d, J = 2.74 Hz, 
1H), 6.90 (t, J = 7.62 Hz, 1H), 7.13 (t, J = 7.62 Hz, 1H), 7.23 (d, 
J = 7.47 Hz, 1H), 7.99 (br s, 1H)  ppm.13CNMR (75 MHz, 
CDCl3): d 55.5, 55.7, 56.0, 56.4, 60.1, 108.9, 112.5, 112.6, 113.3, 
114.0, 115.6, 116.9, 121.9, 125.8, 127.5, 129.2, 129.4, 134.2, 
140.7, 151.7, 152.5, 153.3, 153.6,  179.6 ppm.IR (KBr): ν = 772, 
1030, 1157, 1256, 1522, 1631, 1719, 3284 cm-1. MS-ESI: m/z = 
406 [M+H]+. Elemental analysis: Calculated: C, 74.02; H, 5.95; 
N, 3.60; O, 16.43, Found: C,74.04; H,5.97; N,3.62; O,16.45. 
 
3,3-bis(2,5-dimethoxyphenyl)-5-methoxyindolin-2-one (14): 
Brown solid; Mp 135-137 oC;1H NMR (300 MHz, CDCl3): d 3.44 
(s, 3H), 3.60 (s, 3H), 3.64 (s, 3H), 3.68 (s, 6H), 6.54 (d, J = 2.74 
Hz, 1H), 6.66 (dd, J = 2.59 and 8.54 Hz, 1H), 6.73 (d, J = 8.39 
Hz, 1H), 6.77 (d, J = 8.85 Hz, 2H), 6.82 (d, J = 8.85 Hz, 2H), 6.88 
(d, J = 2.59 Hz, 1H), 6.92 (d, J = 2.44 Hz, 1H), 8.64 (br s, 1H) 
ppm. 13CNMR (75 MHz, CDCl3): d 55.5, 55.9, 56.4, 60.3, 60.8, 
109.2, 111.9, 112.5, 113.0, 113.2, 113.8, 114.5, 11.5, 116.9,  
129.0, 129.4, 134.6, 135.7, 151.8, 152.4, 153.2, 153.6, 155.2, 
180.0 ppm.IR (KBr): ν = 728, 801, 1027 1231, 1495, 1704, 3171 
cm-1. MS-ESI: m/z = 436 [M+H]+, 458 [M+Na]+. Elemental 
analysis: Calculated: C, 71.58; H, 6.01; N,3.34; O,19.07, Found: 
C,71.59; H,6.03; N,3.36; O,19.09. 
 
3,3-bis(2,5-dimethoxyphenyl)-5-methylindolin-2-one (15): 
Brown solid; Mp 230-232 oC;1H NMR (300 MHz, CDCl3): d 2.21 
(s, 3H), 3.47 (s, 3H), 3.58 (s, 3H), 3.64 (s, 3H), 3.69 (s, 3H), 6.49 
(d, J = 2.74 Hz, 1H), 6.71 (d, J = 7.78 Hz, 1H), 6.74-6.79 (m, 2H), 
6.80-6.86 (m, 3H),  6.94 (br d, J = 7.47 Hz, 1H), 7.00 (br s, 1H), 
7.91 (br s, 1H) ppm. 13CNMR (75 MHz, CDCl3): d 21.2, 55.5, 
55.7, 56.1, 56.5, 60.1, 108.6, 112.4, 113.4, 114.1, 115.5, 117.0, 
126.6, 128.0, 129.6, 131.2, 134.0, 138.2, 151.6, 152.7, 153.2, 
153.6, 179.6 ppm.IR (KBr): ν = 725, 797, 1035, 1222, 1507, 
1701, 3172 cm-1. MS-ESI: m/z = 420 [M+H]+. Elemental 
analysis: Calculated: C, 74.42; H,6.25; N,3.47; O,15.86, Found: 
C,74.44; H,6.26; N,3.49; O,15.88. 
 
In vitro Cytotoxic Activity of Novel 3,3-disubstituted 
oxindoles 
 
Cell viability of the test compounds were determined on the basis 
of measurement of in vitro growth inhibition of cell lines by cell 
mediated reduction of tetrazolium salt to form water insoluble 
formazan crystals. The compounds were evaluated for cytotoxic 
activity against various cancer cell lines such as human breast 
cancer cells (MCF7) and human ovarian carcinoma cells 
(SKVO3) by using MTT assay 24. Briefly, the exponential 
growing cells were harvested and plated (1×104) in 96-well 
microtiter plates and grown for a period of 24 h. The cells were 
treated with different concentrations of test compounds and 
incubated for 48 h. Later, the cells were incubated again for 2 h 
with 250 µg mL−1of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide). After incubation, the medium was 
replaced with 100 µL of DMSO and the absorbance was 
measured at 570 nm. The IC50 values of the compounds were 
calculated from the dose-response curves. Doxorubicin was used 
as a positive control for both cancer and normal cell lines. Each 
experiment was performed in triplicates and the IC50 values were 
expressed in mean ± SD. 

RESULTS AND DISCUSSION 
 
Compounds were synthesised by reacting different substituted 
isatins with 1,3,5-trimethoxy benzenes, 1,3-dimethoxy benzenes, 
1,2-dimethoxy benzenes and 1,4-dimethoxy benzenes using 
boron trifluoride diethyl etherate as catalyst. The completion of 
reaction was identified by TLC and all the compounds were 
purified by column chromatography and the synthesised 
compounds were confirmed by 1H NMR, 13C NMR, IR and Mass 
spectroscopy. In the 1H NMR spectra of newly synthesised 
compounds, the secondary amine peak was found at the range of 
7.91-8.98 ppm. All the methoxy protons were found at the range 
of 3.26-3.85 ppm as a characteristic singlet signal. All the 
remaining aromatic and aliphatic proton peaks were observed at 
their expected regions. 13C NMR of the all the compounds showed 
appropriate signals. Synthesised compounds were analysed by 
mass spectra under ESI, molecular ions were analysed in the form 
of M+1. The data indicates that as such there is no difference in 
the fragmentation pattern among the derivatives.  
 
Formation of 3,3-disubstited oxindole motif is a Lewis acid 
catalysed nucleophilic addition elimination type of reaction 
(Figure 1). In this reaction, carbonyl oxygen present on 3rd carbon 
of isatin molecule, donates an electron pair to Boron 
trifluoridediethyletherate which generates an electron deficiency 
on third carbon atom of isatin. Due to this the electron rich tri or 
dimethoxy benzenes as a nucleophile attacks at that position of 
isatin, followed by regeneration and reattack of lewis acid at 
hydroxyl oxygen which again forms an electropositive centre on 
that carbon (3rd position) which makes it possible for one more 
methoxy benzene to attack resulting in the formation of 3,3 di-
substituted oxindoles. 
 
In vitro Cytotoxic Activity  
 
Novel 3,3-disubstituted oxindoles were evaluated for cytotoxicity 
against human breast cancer cells (MCF7) and human ovarian 
carcinoma cell lines (SKVO3) using MTT assay, with 
doxorubicin as standard. Results (Table 1) revealed that both 
MCF7 and SKVO3 cell lines were susceptible to the evaluated 
compounds. Compounds 1 and 2 showed good activity with IC50 
Values 7.2±0.22, 7.1±0.24, μM respectively against MCF7 and 
11.8±0.21, 9.8±0.27, μM respectively against SKVO3 cell lines, 
whereas, remaining all other compounds showed moderate 
activity against both cell lines. 
 
1,3,5 trimethoxybenzene substituted isatins have showed good 
activity compared to dimethoxy benzene compounds which 
indicates the significance of additional methoxy group on 
benzene. Compounds 1 and 2 having chloro and bromo 
substitution respectively at 5th position showed good activity 
which may be due to negative inductive effect.  
 
CONCLUSION 
 
In the current investigation, a efficient method was developed for 
synthesis of a series of novel 3,3-disubstituted oxindoles using 
Boron trifluoride diethyl etherate as catalyst. This process is 
simple to operate, less time consuming with no work up and 
reaction conditions are mild. The newly developed di and tri 
substituted oxindole resulted in considerable cytotoxic activity 
against both human breast cancer cell lines (MCF7) and human 
ovarian carcinoma cell lines (SKVO3). Of the developed set of 
molecules, compound 1 and 2 exhibited relatively higher 
cytotoxic activity against both MCF7 and SKVO3 cell lines.  
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SCHEME  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Probable Reaction Mechanism for the Formation of 3,3-Disubstituted Oxindole Scaffold 
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Table 1: In Vitro Cytotoxic Activity Of 3,3 disubstituted oxindoles By MTT Assay 
 

Compound No. R IC50 values in (μM)a 
MCF7b SKVO3c 

1 Cl 7.2±0.22 11.8±0.21 
2 Br 7.1±0.24 9.8±0.27 
3 H 18.6±0.34 16.8±0.32 
4 Cl 29.5±0.29 11.0±0.29 
5 Br 21.4±0.31 21.7±0.33 
6 OMe 34.8±0.68 15.1±0.26 
7 Me 40.8±0.57 35.2±0.41 
8 H 15.6±0.42 17.8±0.12 
9 Cl 11.1±0.44 12.4±0.42 

10 Br 11.5±0.22 14.5±0.27 
11 OMe 17.1±0.26 15.9±0.37 
12 Me 18.1±0.23 11.8±0.61 
13 H 14.5±0.57 16.6±0.21 
14 OMe 15.1±0.67 18.2±0.49 
15 Me 15.3±0.9 14.3±0.33 

Doxorubicin 1.6±0.28 1.8±0.47 
a 50% cytotoxic concentration or compound concentration required to reduce viability of MCF7 or SKVO3 cell lines by 50%, using the MTT 

methodology, b Breast cancer cell lines,  
c Ovarian cancer cell lines, MCF7 breast cancer  (ATCC® HTB22™), SKOV3 ovarian cancer (ATCC® HTB 77™) 
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