SYNTHESIS AND ANTIBACTERIAL SCREENING OF NOVEL (E)-3-(3-(2-(4-FLUOROPHENYL)-4-METHYLTHIAZOL-5-YL)-1-PHENYL-1H-PYRAZOLE-4-YL)-1-(2-HYDROXYPHENYL)PROP-2-EN-1-ONES
Hemantkumar Akolkar *, Bhausaheb Karale, Nirmala Darekar
P.G. Department of Chemistry, Radhabai Kale Mahila Mahavidyalaya, Ahmednagar, Maharashtra, India,
*Corresponding Author Email: hemantakolkar@gmail.com

INTRODUCTION

1,3-Thiazole is well known sulphur and nitrogen containing five member heterocyclic compound found in many clinically used drugs like Meloxicam, Nizatidine, Tiazofurin, Ritonavir, Bleomycin, etc. Molecules containing thiazole nucleus are attractive targets for medicinal chemistry because of their wide spectrum of biological activities such as anti-inflammatory, antibacterial, antifungal, antihyperglycemic, antiproliferative, adenosine receptor antagonists, C-aryl glucoside SGLT2 inhibitors.

Chalcone is generally found in plant pigments and it is an intermediate involved in the synthesis of many biologically active heterocyclic compounds. A large number of chalcones have been studied mainly due to their various pharmacological properties. Chalcones and their derivatives are known to have antidiabetic, anticancer, anti-parasitic, anti-leishmanial, anti-inflammatory, antimicrobial, antimalarial, antiplasmodial, acetylcholinesterase inhibitor activities.

Fluorine and fluorinated compounds have attracted many researchers due to their pharmacological importance. Fluorine substitution has been extensively investigated in drug designing and development as a means of enhancing pharmacological activity and increasing metabolic or chemical stability. Fluorine containing compounds possess fungicidal, herbicidal, antiviral, cytotoxic, antipyretic, insecticidal and analgesic activities.

Activities associated with thiazole and fluorine containing compounds prompted us to synthesize thiazole and fluorine anchored novel chalcone derivatives.

MATERIALS AND METHODS

The synthetic route adopted to obtain the chalcone derivatives 3a-e is shown in scheme-1. The starting material 3-(2-(4-fluorophenyl)-4-methylthiazol-5-yl)-1-phenyl-1H-pyrazole-4-carbaldehyde 1 was synthesized by reacting 1-[2-(4-fluorophenyl)-4-methyl-1,3-thiazol-5-yl]ethan-1-one with phenyl hydrazine followed by reaction with DMF/POCl3. The structures of all newly synthesized compounds were assigned on the basis of spectral data such as IR, 1H-NMR and mass. These compounds 3a-e were evaluated for their antibacterial activity against gram-negative Pseudomonas fluorescens and Escherichia coli and gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus. Compounds 3a-e showed good activity against gram-positive bacterial strain of Bacillus subtilis compared to the standard drug Ampicillin at a concentration of 100 μg/mL also compounds 3a, 3c, 3d and 3e showed good activity at a concentration of 30 μg/mL but none of them was as active as standard Ampicillin.

RESULTS AND DISCUSSION

All organic solvents were acquired from commercial sources and used as received. The melting points were measured on a DBK melting point apparatus and are uncorrected. IR spectra were recorded on Shimadzu IR Affinity 1S (ATR) FTIR spectrophotometer. 1H NMR (400 MHz) spectra were recorded on Varian 400 spectrophotometer using TMS as an internal standard and DMSO-d6 as solvent and chemical shifts were expressed as δ ppm units. Mass spectra were obtained on Shimadzu (LC-MS) mass spectrometer.
General procedure for the synthesis of (E)-3-(3-(2-(4-fluorophenyl)-4-methylthiazol-5-yl)-1-phenyl-1H-pyrazol-4-yl)-1-(2-hydroxyphenyl) prop-2-en-1-one

A mixture of 3-(2-(4-fluorophenyl)-4-methylthiazol-5-yl)-1-phenyl-1H-pyrazole-4-carbaldehyde 1 (0.015 mol) and 2-hydroxyacetophenone 2 (0.015 mol) was dissolved in 25 mL of ethanol and 10 mL of 40% KOH solution. The reaction mixture was stirred at RT for 10 h. The progress of the reaction was monitored by TLC. After completion of the reaction, the contents were poured over crushed ice and acidified with conc. HCl. The solid product thus obtained was filtered and re-crystallized from ethanol to get compound 3a-e.

(E)-1-(5-Fluoro-2-hydroxyphenyl)-3-(3-(2-(4-fluorophenyl)-4-methylthiazol-5-yl)-1-phenyl-1H-pyrazol-4-yl) prop-2-en-1-one 3a

Yellow solid; Yield: 73 %; M.P. = 226°C; IR: 3153, 1638, 1560, 1170 cm⁻¹; ¹H NMR: δ 2.54 (s, 3H), 7.10 (t, 2H, J = 8Hz), 7.22-8.30 (m, 12H), 9.51 (s, 1H), 12.35 (s, 1H); Mass: m/z 500 [M+H]+.

(E)-1-(5-Chloro-2-hydroxyphenyl)-3-(3-(2-(4-fluorophenyl)-4-methylthiazol-5-yl)-1-phenyl-1H-pyrazol-4-yl) prop-2-en-1-one 3b

Yellow solid; Yield: 69 %; M.P. = 250 °C; IR: 3153, 1638, 1562, 1171 cm⁻¹; ¹H NMR: δ 2.53 (s, 3H), 7.11 (t, 2H, J = 8Hz), 7.16-8.23 (m, 12H), 9.52 (s, 1H), 12.33 (s, 1H); Mass: m/z 516 [M+H]+.

(E)-1-(5-Benzyl-2-hydroxyphenyl)-3-(3-(2-(4-fluorophenyl)-4-methylthiazol-5-yl)-1-phenyl-1H-pyrazol-4-yl) prop-2-en-1-one 3c

Yellow solid; Yield: 77 %; M.P. = 264 °C; IR: 3154, 1637, 1562, 1170 cm⁻¹; ¹H NMR: δ 2.54 (s, 3H), 7.08 (t, 2H, J = 8.4Hz), 7.19-8.30 (m, 12H), 9.53 (s, 1H), 12.34 (s, 1H); Mass: m/z 560 [M+H]+.

(E)-1-(3,5-Dichloro-2-hydroxyphenyl)-3-(3-(2-(4-fluorophenyl)-4-methylthiazol-5-yl)-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one 3d

Yellow solid; Yield: 75 %; M.P. = 270°C; IR: 3152, 1636, 1564, 1169 cm⁻¹; ¹H NMR: δ 2.54 (s, 3H), 7.10 (t, 2H, J = 8.4Hz), 7.17-8.28 (m, 11H), 9.54 (s, 1H), 12.31 (s, 1H); Mass: m/z 550 [M+H]+.
(E)-1-(5-Chloro-2-hydroxy-4-(methylphenyl)-3-(3-(2-(4-fluorophenyl)-4-methylthiazol-5-yl)-1-phenyl-1H-pyrazol-4-yl) prop-2-en-1-one 3e

Yellow solid; Yield: 72%; M.P.=256 °C; IR: 3153, 1638, 1560, 1170 cm⁻¹; ¹H NMR: δ 2.31 (s, 3H), 2.52 (s, 3H), 7.10 (t, 2H, J= 8Hz), 7.22-8.30 (m, 11H), 9.51 (s, 1H), 12.35 (s, 1H); Mass: m/z 530 [M+H]⁺.

Antibacterial screening

The antibacterial activity of synthesized compounds was against the standard Gram-negative bacteria, *Pseudomonas fluorescens* (NCIM 2059), *Escherichia coli* (NCIM 2576) and Gram-positive bacteria, *Bacillus subtilis* (NCIM 2162), *Staphylococcus aureus* (NCIM 2602). Ampicillin served as positive control for antibacterial activity. The *in vitro* preliminary screening values (% inhibition) against microorganisms tested are summarized in Table 1.

All bacterial cultures were first grown in Luria Bertony media at 37°C at 180 rpm. Once the culture reaches 1 O.D., it is used for anti-bacterial assay. Bacterial strains *Pseudomonas fluorescens* (NCIM 2059), *Escherichia coli* (NCIM 2576) as Gram-negative and *Bacillus subtilis* (NCIM 2162), *Staphylococcus aureus* (NCIM 2602) as Gram-positive. The bacterial strains were obtained from NCIM (NCL, Pune) and the bacterial strains were grown in Luria Bertony medium from Hi Media, India. The assay was performed in 96 well plates after 8 h and 12 h for Gram negative and Gram positive bacteria respectively. For the screening inoculated culture 0.1 % of 1 O.D. culture at 620 nm was used and added into each well of 96 well plates which contains the compounds to be tested.

CONCLUSION

A series of novel (E)-3-(3-(2-(4-fluorophenyl)-4-methylthiazol-5-yl)-1-phenyl-1H-pyrazol-4-yl)-1-(2-hydroxyphenyl) prop-2-en-1-one 3a-e was synthesized and their antibacterial activities were reported. Compounds 3a-e showed good activity against gram positive bacterial strain of *B. subtilis* compared to the standard drug Ampicillin at a concentration of 100 μg/mL also compounds 3a, 3c, 3d and 3e showed good activity at a concentration of 30 μg/mL but none of them was as active as standard ampicillin.

ACKNOWLEDGMENTS

The authors are thankful to Rayat Shikshan Sanstha’s Radhabai Kale Mahila Mahavidyalaya, Ahmednagar and Department of Science and Technology (FIST) for providing financial assistance. The authors are also thankful to Dr. Dhiman Sarkar, National Chemical Laboratory, Pune for providing antibacterial screening of the synthesized compounds.

REFERENCES

8. Lawrence NJ, Patterson RP, Ooi LL, Cook D, Ducki S. Effects of α-substitutions on structure and biological activity

Table 1: Antibacterial screening of some synthesized compounds (% inhibition)

<table>
<thead>
<tr>
<th>Comp</th>
<th>Gram Negative</th>
<th>Gram Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. fluorescens</td>
<td>E. coli</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>3a</td>
<td>13.4</td>
<td>1.6</td>
</tr>
<tr>
<td>3b</td>
<td>13.0</td>
<td>-</td>
</tr>
<tr>
<td>3c</td>
<td>20.1</td>
<td>2.1</td>
</tr>
<tr>
<td>3d</td>
<td>14.7</td>
<td>0.8</td>
</tr>
<tr>
<td>3e</td>
<td>14.5</td>
<td>-</td>
</tr>
<tr>
<td>AMP</td>
<td>97.0</td>
<td>95.2</td>
</tr>
</tbody>
</table>

AMP - Ampicillin; Concentrations in μg/mL.

Source of support: Rayat Shikshan Sanstha’s Radhabai Kale Mahila Mahavidyalaya, Ahmednagar and Department of Science and Technology (FIST), Conflict of interest: None Declared

Disclaimer: IRPJ is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRPJ cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRPJ editor or editorial board members.