A REVIEW ON FACTORS AFFECTING THE DESIGN OF NASAL DRUG DELIVERY SYSTEM

Dhakar Ram Chand¹*, Maurya Sheo Datta², Tilak Vijay Kumar¹, Gupta Anish Kumar², Dangi Girija³
¹Dept of Pharmacy, IEC Group of Institution, KP-1, G. Noida, India
²Amanath pharmaceuticals, Puducheri, India
³Dept of Pharmacy, GIET, Nathdwara, Udaipur, India

*R C Dhakar, Lecturer, Dept. of Pharmacy, IEC Group of Institution, KP-1, Greater Noida, India- 201308
E-mail: dhakar_rc@yahoo.co.in
Article Received on: 05/11/10 Revised on: 17/11/10 Approved for publication: 29/11/10

ABSTRACT
Transmucosal nasal delivery is a promising drug delivery option where common drug administrations (e.g., intravenous, intramuscular, or oral) are inapplicable. Recently, it has been shown that many drugs have better bioavailability by nasal route than by oral route. This has been attributed to rich vasculature and a highly permeable structure of the nasal mucosa coupled with avoidance of hepatic first-pass elimination, gut wall metabolism and/or destruction in the gastrointestinal tract. The physiology of the nose presents obstacles, but offers a promising route for non-invasive systemic delivery of numerous therapies and debatably drug delivery route to the brain. To overcoming problems in nasal drug delivery requires deep understanding of the various factors affecting nasal delivery. Thus present review focuses on various aspects of nasal drug delivery with special emphasis to factors affecting nasal drug administration.

KEYWORDS: Transmucosal nasal delivery, hepatic first-pass metabolism, non-invasive, systemic delivery

INTRODUCTION
Oral drug delivery is the most desirable route for drug administration whenever systemic effects are intended ¹, ². But low oral bioavailability of some compounds has prompted the search of more effective routes for their systemic delivery ³. Transmucosal routes of drug delivery (i.e., the mucosal linings of the nasal, rectal, vagina, ocular and oral cavity) offer distinct advantages over peroral administration for systemic drug delivery. These advantages includes possible bypass of the first pass effect, avoidance of pre-systemic elimination of gastro intestinal tract and depending on the particular drug. The nasal cavity as a site for systemic drug delivery has been investigated by many research groups. However, the potential irritation and irreversible damage to the ciliary action application of nasal dosage forms, as well as the large intra and inter subject variability in mucus secretion in the nasal mucosa could significantly effect drug absorption from this site.

Currently, many nasal drug products on the market are indicated for the treatment of local disease such as allergic rhinitis, pain and for centrally acting drugs where the direct pathway from the nose to brain might offer a quicker and further specific therapeutic effect. Many low-molecular-weight, non-polar drugs (<300Da) in solution form are able to infiltrate the nasal epithelium with effortlessness. The effectiveness of a particular delivery system is also affected by its formulation as a liquid⁴, powder⁴, gel⁵, microsphere⁶, liposome⁷ or nanoparticle⁸. Intranasal drug delivery is now recognized to be a useful and reliable alternative to oral and parenteral routes. In general, among the primary targets for intranasal administration are pharmacologically active compounds with poor stability in gastrointestinal fluids, poor...
intestinal absorption and/or extensive hepatic first-pass elimination, such as peptides, proteins and polar drugs. The nasal delivery seems to be a favorable way to circumvent the obstacles for blood-brain barrier (BBB) allowing the direct drug delivery in the biophase of central nervous system (CNS)-active compounds. It has also been considered to the administration of vaccines. In addition, intranasal absorption avoids the gastrointestinal and hepatic pre-systemic metabolism, enhancing drug bioavailability in comparison with that obtained after gastrointestinal absorption. Hence, it appears to be an appropriate route for the treatment of not only acute or chronic nasal diseases, but also for a range of acute or chronic conditions requiring considerable systemic drug exposure.

The present review outlines anatomical and physiological features of nasal cavity, the major factors affecting nasal drug delivery. Additionally, this review focuses on the strategies used to enhance the nasal drug absorption and research carried out on nasal drug delivery.

NASAL ANATOMY AND PHYSIOLOGY OF NOSE

The human nasal cavity has a total volume of about 16 to 19 ml, and a total surface area of about 180 cm^2, and is divided into two nasal cavities via the septum. The volume of each cavity is approximately 7.5 ml, having a surface area around 75 cm^2.

The vestibular region: It is located at the opening of nasal passages and is responsible for filtering out the air borne particles. It is considered to be the least important of the three regions with regard to drug absorption.

The respiratory region: The respiratory region is the largest having the highest degree of vascularity and is mainly responsible for systemic drug absorption.

The olfactory region: It is of about 10 cm^2 in surface area, and it plays a vital role in transportation of drugs to the brain and the CSF. Human olfactory region comprises of thick connective tissue lamina propria, upon which rests the olfactory epithelium. Lamina propria has axons, bowans bundle and blood vessels whereas epithelium consists of three different cells i.e. basal cells, supporting cells and olfactory receptor cells. Neurons are interspersed between supporting cells. The olfactory receptor cells are bipolar neurons with a single dendritic and extending from the cell body to the free apical surface where it ends in an olfactory knob carrying non-motile cilia, which extend above the epithelium.

The epithelium of the nasal passage is covered by a mucus layer, which entraps particles. The mucus layer is cleared from the nasal cavity by cilia, and is renewed every 10 to 15 minutes. The pH of the mucosal secretions ranges from 5.5 to 6.5 in adults and 5.0 to 6.7 in children. The mucus moves through the nose at an approximate rate of 5 to 6 mm/min resulting in particle clearance within the nose every 15 to 20 minutes. Numerous enzymes for instance, cytochrome P450 enzymes, carboxylesterases and glutathione S-transferases are found in nasal cavity.

REASON FOR DEVELOPMENT OF NASAL DELIVERY

Nasal drug delivery is a useful delivery method for drugs that are active in low doses and show no or minimal oral bioavailability. The nasal route circumvents hepatic first pass elimination associated with the oral delivery: it is easily accessible and suitable for self-medication. Currently, two classes of nasally delivered therapeutics are on the market. The first one comprises low molecular weight and hydrophobic drugs for the treatment of the nasal mucosa and sinus, including decongestants, topical steroids, antibiotics and other (OTC) products. The second class encompasses a few drugs, which have sufficient nasal absorption for displaying systemic effects. Important candidates are the compounds, generally administered by injection and hardly absorbed after oral administration, due to their instability in gastrointestinal tract, poor absorption properties, and their rapid and extensive biotransformation.

MECHANISM OF DRUG ABSORPTION THROUGH NASAL MUCOSA

The first step in the absorption of drug from the nasal cavity is passage through the mucus. Small, unchanged particles easily pass through this layer. However, large or charged particles may find it more
difficult to cross. Mucin, the principle protein in the mucus, has the potential to bind to solutes, hindering diffusion. Additionally, structural changes in the mucus layer are possible as a result of environmental changes (i.e. pH, temperature, etc.)24. Subsequent to a drug’s passage through the mucus, there are several mechanisms for absorption through the mucosa25. These include transcellular or simple diffusion across the membrane, paracellular transport \textit{via} movement between cell and transcytosis by vesicle carriers24. Obstacles to drug absorption are potential metabolism before reaching the systemic circulation and limited residence time in the cavity. Several mechanisms have been proposed but the following two mechanisms have been considered predominantly.

The first mechanism involves an aqueous route of transport, which is also known as the paracellular route. This route is slow and passive. Insulin, mannitol and propranolol were absorbed through this mechanism. There is an inverse log-log correlation between intranasal absorption and the molecular weight of water-soluble compounds. Literature survey revealed that good bioavailability was observed for drugs with a molecular weight up to 1000 Daltons. But with the help of permeation enhancers good bioavailability can be enhanced to at least 6000 Daltons26. The second mechanism involves transport through a lipoidal route that is also known as the transcellular process and is responsible for the transport of lipophilic drugs that show a rate dependency on their lipophilicity. Drugs also cross cell membranes by an active transport route \textit{via} carrier-mediated means or transport through the opening of tight junctions23. For example, Chitosan, a natural biopolymer from shellfish, opens tight junctions between epithelial cells to facilitate drug transport27.

MERITS OF INTRANASAL DRUG DELIVERY

- Non – invasive, rapid, Self-administration thus improved convenience and compliance.
- Large nasal mucosal surface area for dose absorption
- Bypasses the BBB and targets the CNS, reducing systemic exposure and thus systemic exposure and thus systemic side effects.
- Minimal aftertaste
- Does not require any modification of the therapeutic agent being delivered neurological and psychiatric disorders.
- Rich vasculature and highly permeable structure of the nasal mucosa greatly enhance drug absorption.
- Problem of degradation of peptide drugs in minimized up to a certain extent.
- Easy accessibility to blood capillaries9,14,15,27,28.

DEMERITS OF INTRANASAL DRUG DELIVERY

- Concentration achievable in different regions of the brain and spinal cord varies with each agent.
- Delivery is expected to decrease with increasing molecular weight of drug.
- Some therapeutic agents may be susceptible to partial degradation in the nasal mucosa or may cause irritation to the mucosa.
- Nasal congestion due to cold or allergies may interfere with this method of delivery.
- Frequent use of this route may result in mucosal damage29,30.

FACTORS AFFECTING THE CHARACTERISTICS OF NASAL DRUG DELIVERY

Some of the physicochemical, formulation and physiological factors are imperative and must be considered prior to designing intranasal delivery.

Physicochemical properties of drugs

Chemical form: The chemical form of a drug is important in determining absorption. For example, conversion of the drug into a salt or ester form can also alter its absorption. Huang et al 1985 studied the effect of structural modification of drug on absorption31. It was observed that in-situ nasal absorption of carboxylic acid esters of L-Tyrosine was significantly greater than that of L-Tyrosine. **Polymorphism:** Polymorphism is known to affect the dissolution rate and solubility of drugs and thus their absorption through biological membranes.
Molecular Weight: A linear inverse correlation has been reported between the absorption of drugs and molecular weight up to 300 Da. Absorption decreases significantly if the molecular weight is greater than 1000 Da except with the use of absorption enhancers. Shape is also important. Linear molecules have lower absorption than cyclic-shaped molecules.

Particle Size: It has been reported that particle sizes greater than 10μm are deposited in the nasal cavity.

Solubility & dissolution Rate: Drug solubility and dissolution rates are important factors in determining nasal absorption from powders and suspensions. The particles deposited in the nasal cavity need to be dissolved prior to absorption. If a drug remains as particles or is cleared away, no absorption occurs.

Formulation factors

pH of the formulation: Both the pH of the nasal cavity and pKa of a particular drug need to be considered to optimize systemic absorption. Nasal irritation is minimized when products are delivered with a pH range of 4.5 to 6.5. Also, volume and concentration are important to consider. The delivery volume is limited by the size of the nasal cavity. An upper limit of 25 mg/dose and a volume of 25 to 200 μL/ nostril have been suggested.

- To avoid irritation of nasal mucosa;
- To allow the drug to be available in unionized form for absorption;
- To prevent growth of pathogenic bacteria in the nasal passage;
- To maintain functionality of excipients such as preservatives; and
- To sustain normal physiological ciliary movement.

Lysozyme is found in nasal secretions, which is responsible for destroying certain bacteria at acidic pH. Under alkaline conditions, lysozyme is inactivated and the nasal tissue is susceptible to microbial infection. It is therefore advisable to keep the formulation at a pH of 4.5 to 6.5 keeping in mind the physicochemical properties of the drug as drugs are absorbed in the unionized form.

Buffer Capacity: Nasal formulations are generally administered in small volumes ranging from 25 to 200μL. Hence, nasal secretions may alter the pH of the administrated dose. This can affect the concentration of unionized drug available for absorption. Therefore, an adequate formulation buffer capacity may be required to maintain the pH in-situ.

Osmolarity: Drug absorption can be affected by tonicity of formulation. Shrinkage of epithelial cells has been observed in the presence of hypertonic solutions. Hypertonic saline solutions also inhibit or cease ciliary activity. Low pH has a similar effect as that of a hypertonic solution.

Gelling / Viscosity building agents or gel-forming carriers: Pennington et al 1988 studied that increase in solution viscosity may provide a means of prolonging the therapeutic effect of nasal preparations32. Suzuki et al 1999 showed that a drug carrier such as hydroxypropyl cellulose was effective for improving the absorption of low molecular weight drugs but did not produce the same effect for high molecular weight peptides33.

Solubilizers: Aqueous solubility of drug is always a limitation for nasal drug delivery in solution. Conventional solvents or co-solvents such as glycols, small quantities of alcohol, Transcutol (diethylene glycol monoethyl ether), medium chain glycerides and Labrasol can be used to enhance the solubility of drugs34. Other options include the use of surfactants or cyclodextrins such as HP-β-cyclodextrin that serve as a biocompatible solubilizer and stabilizer in combination with lipophilic absorption enhancers.

Preservatives: Most nasal formulations are aqueous based and need preservatives to prevent microbial growth. Parabens, benzalkonium chloride, phenyl ethyl alcohol, EDTA and benzoyl alcohol are some of the commonly used preservatives in nasal formulations. Van De Donk et al 1980 have shown that mercury containing preservatives have a fast and irreversible effect on ciliary movement and should not be used in the nasal systems35.

Antioxidants: Usually, antioxidants do not affect drug absorption or cause nasal irritation. Commonly used antioxidants are sodium metabisulfite, sodium bisulfite, butylated hydroxytoluene and tocopherol.

Humectants: Many allergic and chronic diseases are often connected with crusts and drying of mucous membrane. Therefore humectants can be added especially in gel-based nasal products. Humectants avoid
nasal irritation and are not likely to affect drug absorption. Common examples include glycerin, sorbitol and mannitol.

Drug Concentration, Dose & Dose Volume: Drug concentration, dose and volume of administration are three interrelated parameters that impact the performance of the nasal delivery performance. Nasal absorption of L-Tyrosine was shown to increase with drug concentration in nasal perfusion experiments.

Role of Absorption Enhancers: Absorption enhancers may be required when a drug exhibits poor membrane permeability, large molecular size, lack of lipophilicity and enzymatic degradation by amino peptidases. Osmolarity and pH may accelerate the enhancing effect. Absorption enhancers improve absorption through many different mechanisms, such as increasing membrane fluidity, increasing nasal blood flow, decreasing mucus viscosity, and enzyme inhibition.

Physiological factors

Effect of Deposition on Absorption: Deposition of the formulation in the anterior portion of the nose provides a longer nasal residence time. The anterior portion of the nose is an area of low permeability while posterior portion of the nose where the drug permeability is generally higher, provides shorter residence time.

Nasal blood flow: Nasal mucosal membrane is very rich in vasculature and plays a vital role in the thermal regulation and humidification of the inhaled air. The blood flow and therefore the drug absorption will depend upon the vasoconstriction and vasodilatation of the blood vessels.

Effect of Enzymatic Activity: Several enzymes that are present in the nasal mucosa might affect the stability of drugs. For example, proteins and peptides are subjected to degradation by proteases and amino-peptidase at the mucosal membrane. The level of amino-peptidase present is much lower than that in the gastrointestinal tract. Peptides may also form complexes with immunoglobulin (Igs) in the nasal cavity leading to an increase in the molecular weight and a reduction of permeability.

Effect of Mucociliary Clearance: The absorption of drugs is influenced by the residence (contact) time between the drug and the epithelial tissue. The mucociliary clearance is inversely related to the residence time and therefore inversely proportional to the absorption of drugs administered.

Effect of Pathological Condition: Intranasal pathologies may affect the nasal mucociliary transport process and/or capacity for nasal absorption.

CHALLENGES AND OPPURTUNITIES FOR NASAL DELIVERY SYSTEMS

Existing nasal delivery devices such as spray pumps and pipettes cannot fully exploit the described potential advantages of nasal delivery. A large fraction of the dose is deposited on the anterior segment lined by skin, which is not the target for either topical drugs or systemic drugs. Drugs transported along the floor of the nose may cause bad taste and irritation and reduce patient acceptance. Finally, inadequate and variable deposition in the remote region housing the openings to the sinuses and middle ears, as well as the olfactory region, represents a real challenge for extended use of nasal administration of drugs and vaccines. This applies in particular to the new advanced and expensive drugs requiring demanding combination of reliable dosing, high patient compliance and reproducible bio-availability to ensure their efficacy and safety. Regarding actual formulation, most nasal products are currently formulated as liquids and delivered by metered spray pumps. Liquid formulations can be limited by the solubility, stability and dose volume. Powders, on the other hand, are more stable and it is easier to customize the size and surface properties. Some studies indicate reduced local irritation and more rapid absorption of powders.

Bioactis Ltd. (“Bioactis”; CEO, Ryoichi Nagata, MD, PhD) has been developing nasal devices, which are medical devices that deliver drugs to the nose.

CURRENT APPROACHES FOR INCREASING NASAL BIOAVAILABILITY

Bioavailability of nasally administered drugs is particularly restricted by low drug solubility, rapid enzymatic degradation in nasal cavity, poor membrane penetration and rapid MCC. Thus several approaches have been suggested to overcome these limitations.
Prodrugs
Intranasal drugs are commonly administered as solutions or as powder formulations which need to undergo a dissolution process before absorption. Lipophilic drugs easily pass through biomembranes, however they are poorly water soluble. In this way, they should be administered as a prodrug with higher hydrophilic character in order to make possible the production of an aqueous nasal formulation with a suitable concentration. Once in the blood stream, the prodrug must be quickly converted to the parent drug. Kao et al. produced various prodrugs of L-Dopa and observed that their solubility enhanced significantly in comparison with the parent drug, allowing, hence, the development of adequate nasal formulations. Similar results were obtained for testosterone which is also poorly water-soluble. In contrast, very hydrophilic polar drugs may not have ability to cross biomembranes. Thereby, if they are administered as prodrugs with higher lipophilic character, the penetration through the membrane may increase. Some researches have also used the prodrug approach for improving enzymatic stability of drugs. For example, Yang et al. stated that L-aspartate-β-ester prodrug of acyclovir was more permeable and less labile to enzymatic hydrolysis than its parent drug. In addition, the potential use of prodrugs to protect peptide drugs from nasal enzymatic degradation has been discussed and suggested as a powerful strategy to increase the bioavailability of peptides when intranasally administered.

Co-Solvents
An alternative approach to the use of prodrugs in order to increase drug solubility is the use of co-solvents. Co-solvents most used in intranasal formulations include glycerol, ethanol, propylene glycol and polyethylene glycol and may be of the most importance since they are nontoxic, pharmaceutically acceptable and nonirritant to nasal mucosa.

Enzymatic inhibitors
Nasal mucus layer and nasal mucosa act as enzymatic barriers during nasal drug delivery, because they have a wide variety of enzymes. Various approaches have been used to avoid enzymatic degradation, including the use of proteases and peptidases inhibitors. For example, bestatine and comostate amylase are used as aminoptidases inhibitors and leupeptine and aprotinin as trypsin inhibitors probably involved in the degradation of calcitonin. Furthermore, bacitracin, amastatin, boroleucin and puromycin have been used to avoid enzymatic degradation of drugs such as leucine enkephalin and human growth hormone. Finally, enzymatic inhibition can also be achieved using certain absorption enhancers (bile salts and fusidic acid). It is demonstrated that disodium EDTA, an absorption enhancer, reduces enzymatic degradation of beta sheet breaker peptide used for the treatment of Alzheimer’s disease.

Permeation enhancers
Small and large hydrophilic drugs may be poorly permeable across nasal epithelium and may show an insufficient bioavailability. Their permeation can improve by administered in combination with absorption enhancers which induce reversible modifications on the structure of epithelial barrier.

ACKNOWLEDGEMENT
Author is highly thankful to Dept. of Pharmacy, IEC College of Engineering and Technology, Greater Noida, INDIA for providing best facility and atmosphere for this work.

REFERENCES
38. Margret chandira R, Debjit B, Chiranjib B, Jayakar B. Recent advances in nasal drug delivery systems-a review, Pharmavita.net

Table 1: Nasal Bioavailability-Problems, Challenges & Solutions

<table>
<thead>
<tr>
<th>Problem</th>
<th>Challenge</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor physicochemical properties</td>
<td>Improve physicochemical properties of</td>
<td>Prodrugs, Cosolvents</td>
</tr>
<tr>
<td>of drug/formulation</td>
<td>drug and/or formulation</td>
<td>cyclodextrins</td>
</tr>
<tr>
<td>Low permeability through</td>
<td>Increase drug permeability and dissolution</td>
<td>Prodrugs, Cosolvents</td>
</tr>
<tr>
<td>nasal membrane</td>
<td>Modify nasal membrane</td>
<td>absorption enhancers</td>
</tr>
<tr>
<td></td>
<td>Enhance drug residence time in nasal cavity</td>
<td>Mucoadhesive systems</td>
</tr>
<tr>
<td>Enzymatic degradation</td>
<td>Reduce drug affinity to nasal enzymes</td>
<td>Prodrugs, Cosolvents,</td>
</tr>
<tr>
<td></td>
<td>Inhibit nasal enzymes</td>
<td>Enzymatic inhibitors</td>
</tr>
<tr>
<td></td>
<td>Protect drugs from nasal enzymes</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Mucosal penetration enhancers and mechanisms of action

<table>
<thead>
<tr>
<th>Classification</th>
<th>Examples</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surfactants</td>
<td>Anionic: Sodium lauryl sulphate</td>
<td>Perturbation of intercellular lipids,</td>
</tr>
<tr>
<td></td>
<td>Cationic: Cetylpyridinium Chloride</td>
<td>Protein domain integrity,</td>
</tr>
<tr>
<td></td>
<td>Nonionic: Poloxamer, Span, Tween</td>
<td>Distracts membrane,</td>
</tr>
<tr>
<td>Bile salts</td>
<td>Sodium glycodeoxycholate, Sodium glycocholate, Sodium taurodeoxycholate,</td>
<td>Distracts membrane, Open tight junctions, Mucolytic activity</td>
</tr>
<tr>
<td>Cyclodextrins</td>
<td>α, β, γ Cyclodextrin, Methylated β–Cyclodextrins</td>
<td>Inclusion of membrane Compounds, Open Tight junctions</td>
</tr>
<tr>
<td>Fatty acids</td>
<td>Oleic acid, Lauric acid, Caprylic acid, Phosphotidylcholine</td>
<td>Increase fluidity of phospholipid domains, Distracts membrane</td>
</tr>
</tbody>
</table>
Cationic compounds | Poly-L-arginine, L-lysine | Ionic interaction with negative charge on the mucosal surface
Chelators | EDTA, Citric Acid, Sodium citrate, | Interfere with Ca Polyacrylates
+ Ve Charged polymers | Chitosan, Trimethyl chitosan | Ionic interaction with negative charge on the mucosal surface
Bioadhesive Materials | Carbopol, Starch, Chitosan | Reduce nasal clearance, Open tight junctions

Table 3: Various intranasal drug delivery systems and their purpose/application

<table>
<thead>
<tr>
<th>Drug</th>
<th>Delivery system</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentazocine<sup>60</sup></td>
<td>Microspheres</td>
<td>Avoiding first pass effect</td>
</tr>
<tr>
<td>Ketorolac Trimethamine<sup>61</sup></td>
<td>Microspheres</td>
<td>Avoid gastric complications</td>
</tr>
<tr>
<td>Sildenafil Citrate<sup>62</sup></td>
<td>Microspheres</td>
<td>Avoid first pass metabolism</td>
</tr>
<tr>
<td>Metoclopramide HCI<sup>63</sup></td>
<td>Microspheres</td>
<td>Permeation enhancement</td>
</tr>
<tr>
<td>Propranolol HCI<sup>64</sup></td>
<td>Microspheres</td>
<td>Open tight junction without cell damage</td>
</tr>
<tr>
<td>N<sup>6</sup>Cyclopentyladenosine<sup>65</sup></td>
<td>Microspheres</td>
<td>Selective brain targeting</td>
</tr>
<tr>
<td>Propranolol HCI<sup>66</sup></td>
<td>Microspheres</td>
<td>Avoiding first pass effect</td>
</tr>
<tr>
<td>Ondansetron<sup>67,68</sup></td>
<td>Microspheres</td>
<td>Avoiding first pass effect, improve therapeutic efficacy</td>
</tr>
<tr>
<td>Domperidone<sup>69</sup></td>
<td>Microspheres</td>
<td>Selective brain targeting</td>
</tr>
<tr>
<td>Sumatriptan Succinate<sup>70</sup></td>
<td>Microspheres</td>
<td>Avoid hepatic first pass metabolism and brain targeting</td>
</tr>
<tr>
<td>Clonazepam<sup>71</sup></td>
<td>Microspheres</td>
<td>Brain targeting</td>
</tr>
<tr>
<td>Clonazepam<sup>72</sup></td>
<td>Microemulsion</td>
<td>Brain targeting</td>
</tr>
<tr>
<td>Valproic Acid<sup>73</sup></td>
<td>Microemulsion</td>
<td>Enhanced bioavailability with brain targeting</td>
</tr>
<tr>
<td>Clobazam<sup>74</sup></td>
<td>Microemulsion</td>
<td>Brain targeting</td>
</tr>
<tr>
<td>Lomotrigone<sup>75</sup></td>
<td>Microemulsion</td>
<td>Brain targeting</td>
</tr>
<tr>
<td>Lorazepam<sup>76,79</sup></td>
<td>Microemulsion</td>
<td>Brain targeting</td>
</tr>
<tr>
<td>Sumatriptan<sup>80-85</sup></td>
<td>Microemulsion</td>
<td>Enhanced the bioavailability</td>
</tr>
<tr>
<td>Zolmitriptan<sup>86</sup></td>
<td>Microemulsion</td>
<td>Enhanced bioavailability</td>
</tr>
<tr>
<td>Zolmitriptan<sup>87</sup></td>
<td>Microemulsion</td>
<td>Enhanced bioavailability & rapid onset of action</td>
</tr>
<tr>
<td>Eucalyptus oil<sup>88</sup></td>
<td>Microemulsion</td>
<td>Enhanced bioavailability with brain targeting</td>
</tr>
<tr>
<td>Nimodipine<sup>89</sup></td>
<td>Microemulsion</td>
<td>Enhanced solubility and brain targeting</td>
</tr>
<tr>
<td>Nobiletin<sup>90</sup></td>
<td>Microemulsion</td>
<td>Improve bioavailability in the brain</td>
</tr>
<tr>
<td>Tacrine<sup>71</sup></td>
<td>Microemulsion</td>
<td>Targeting to brain</td>
</tr>
<tr>
<td>Zolmitriptan<sup>92</sup></td>
<td>Microemulsion</td>
<td>Targeting to brain</td>
</tr>
<tr>
<td>Diazepam<sup>93</sup></td>
<td>Microemulsion</td>
<td>Rapid absorption</td>
</tr>
<tr>
<td>Raltitrex<sup>94</sup></td>
<td>Microemulsion</td>
<td>Targeting to brain tissue</td>
</tr>
<tr>
<td>Sildenafil Citrate<sup>95</sup></td>
<td>Microemulsion</td>
<td>Improve bioavailability with shorter T<sub>max</sub></td>
</tr>
<tr>
<td>Insulin<sup>96</sup></td>
<td>Microemulsion</td>
<td>Enhanced the Bioavailability</td>
</tr>
<tr>
<td>Midazolam<sup>97</sup></td>
<td>Microemulsion</td>
<td>To investigate pharmacokinetics & pharmacodynamics</td>
</tr>
<tr>
<td>Tetanus toxoid<sup>98</sup></td>
<td>Liposome</td>
<td>Improved immum responce</td>
</tr>
<tr>
<td>Insulin<sup>99</sup></td>
<td>Liposome</td>
<td>Increased insulin permeability</td>
</tr>
<tr>
<td>Desmopressin<sup>100</sup></td>
<td>Liposome</td>
<td>Enhancement of antidiuresis</td>
</tr>
<tr>
<td>Diphenhydramine<sup>101</sup></td>
<td>Liposome</td>
<td>Increased drug retention in the nasal cavity</td>
</tr>
<tr>
<td>Insulin, calcitonin<sup>102</sup></td>
<td>Liposome</td>
<td>Enhanced absorption</td>
</tr>
<tr>
<td>Insulin<sup>103</sup></td>
<td>Powder</td>
<td>Improve bioavailability</td>
</tr>
</tbody>
</table>
Figure 1: Showing Nasal vascular supply and various part of nasal cavity

Figure 2: (A) Paracellular route (A1) Intercellular spaces, (A2) Tight junctions, (B) Transcellular route (B1) Passive diffusion, (B2) Active transport, (C) Transcytosis

Figure 3: Drug related factors affecting nasal drug absorption
Figure 4: Effect of mucociliary clearance on nasal drug absorption

Figure 5: Effect of pathological conditions on nasal mucociliary clearance

Figure 6: Approaches to increasing nasal drug absorption