EVALUATION OF ANTIBACTERIAL ACTIVITY OF METHANOLIC EXTRACT OF SEEDS OF PHYLA NODIFLORA LINN.

Patel Janki B*, Shah Kinjal H, Patel Rashmika C
B. Pharmacy College Rampura – Kakanpur, Godhra, India

Article Received on: 03/04/2011 Revised on: 20/05/2011 Approved for publication: 12/06/2011

*Email: janki0410pharma@gmail.com

ABSTRACT
‘Jalappali’ described in classical texts of Ayurveda is botanically identified as Phyla nodiflora Linn. (Syn. Lippia nodiflora Rich). In present study methanolic extract of seeds of Phyla nodiflora Linn. was screened for in-vitro antibacterial activity against gram positive and gram negative bacteria by cup-plate method. The methanolic extract of the seeds significantly inhibit the growth of bacteria as compared to the standard bactericide (streptomycin). The study reveals that the methanolic fraction of seeds of Phyla nodiflora Linn possesses significant antibacterial activity.

KEYWORDS Antibacterial activity, streptomycin, seeds of Phyla nodiflora, cup-plate method.

INTRODUCTION
Phyla nodiflora Linn. (family– Verbenaceae) Known as Lippia nodiflora Rich, Jalapipali. As per Ayurvedic literature the drug is shukrala, laghu, sheeta, katu, ruksha, kasyha and agnivardhaka. Phyla nodiflora Linn. is an evergreen, creeping, much branched herb is distributed in India, Sri Lanka, Ceylon, Baluchistan, South and Central America and Tropical Africa. It is found throughout warmer parts of India ascending upto 900 m in the hills including Andhra Pradesh, Karnataka, Kerala, Maharashtra, some parts of Rajasthan, Tamilnadu, Uttar Pradesh and West Bengal. It is common in wet places, along bunds or irrigation channels, canal edges and river banks.1,2

Phyla nodiflora Linn. is a creeping, prostrate, much branched perennial herb with branches spreading profusely and rooting at the nodes. Fruits are Capsular, 1.5 – 2 mm long, globose – oblong, dry, splitting into two seeded plan convex glabrous pyrenes.3-5 In literature review it was found that the aerial parts are used as anodyne, antibacterial, diuretic, emmenogogue, parasiticide, refrigerant, febrifuge and cooling.6,7 According to traditional uses and Unani system of medicine the plant is acrid, hot and dry; diuretic, maturant, useful in fevers and cold, astringent to bowels, stomachic, used in lack of bowel movements, pain in knee joints and in lithiasis.8-11 Phyla nodiflora contains flavonoids, sugars, sterol, an essential oil, resin, non-glucosidal bitter substance, tannin, large amount of potassium nitrate and other constituents.12 Several workers have reported many pharmacological properties including antispasmodic,13 hair afflictions,14 anti-inflammatory, analgesic and antipyretic,15 antibacterial,16 anti Helicobacter pylori activity,17 hypotensive activity,18 antinociceptive19 and antifungal20. Yet, antibacterial potential of methanol fraction of seeds of the plant was not proved; it was studied in the present research-work.

MATERIALS AND METHODS
Collection and identification of the plant material
Seeds of Phyla nodiflora Linn. were collected from wet places, along irrigation channels and canal edges of Kalsar village, near Dakor, Gujarat and its authentication was confirmed by Dr. A. S. Reddy, Prof. and Head of Botany Dept., Sardar Patel University, Vallabh Vidyanagar. A voucher specimen has been retained in the department of Pharmacognosy, B.Pharmacy College, Rampura, Kakanpur, Dist: Panchmahal, Gujarat, India for future reference.

Preparation of the extract
Phyla nodiflora Linn. seeds were collected, shade dried seeds were coarsely powdered with a mechanical grinder. Powder was passed through sieve No. 40 and stored in an airtight container for the extraction. 100gm of powdered drug was extracted with petroleum ether for 24 hours by Soxhlet apparatus. The marc left after petroleum ether extract were dried and then extracted with 95% methanol in Soxhlet apparatus for 72 hours. After completion of extraction, the extracts were filtered through Whatmann No. 1 filter paper. The filtrates were...
concentrated to dryness in vacuum and stored in a dessicator.

Microorganisms used
The test microorganisms used for the antimicrobial activity were four bacterial species (two Gram positive and two Gram negative) – *Bacillus subtilis* MTCC (121), *Staphylococcus aureus* MTCC (96), *Pseudomonas aeruginosa* MTCC (429), *Escherichia coli* MTCC (443). These organisms were identified and procured from Institute of Microbial Technology (IMTECH-CSIR), Chandigarh, India. The stock cultures were maintained on nutrient agar medium at 4°C. The microorganisms were activated by inoculating a loopful of the strain in the nutrient broth (25ml).

Antimicrobial screening
Evaluation of antimicrobial activity was performed by Cup plate method. Sterile Muller Hinton agar media was poured in sterile Petri plates under aseptic conditions. 0.1 ml of the test organisms were spread over plates on agar plates. Cups were made at the size of 6 mm diameter, in the agar plates using the sterile borer. Streptomycin (10µg/disc) was served as reference standard. The disc (6 mm in diameter) was impregnated with 10 µl of each of 125 mg/ml (1.25 mg/disc), 250 mg/ml (2.5 mg/disc) and 500 mg/ml (5 mg/disc) methanolic extracts of seeds of the plant. The plates containing bacterial strains and standard were incubated at 37±0.5°C for 48 h depending on the incubation time required for a visible growth. The zone of inhibition (mm) was calculated by measuring the diameter of zone of bacterial growth around the cup. The average of three independent determinations was recorded.

STATISTICAL ANALYSIS
The values are represented as mean ± standard error of mean (SEM) for triplicate set of experiments. P< 0.05 is considered statistically significant (ANOVA, Dunnett’s t-test).

RESULTS AND DISCUSSION
Antibacterial activity was done for methanolic extract of seeds of *Phylla nodiflora* Linn. During antibacterial study the methanolic extract of seeds showed concentration dependent increase in zone of inhibition against Gram +ve and Gram –ve bacteria by cup-plate method. The results of antibacterial activity are shown in Table 1, Figure 1

REFERENCES
TABLE 1: ANTIBACTERIAL ACTIVITY OF METHANOLIC EXTRACT OF SEEDS OF PHYLA NODIFLORA LINN.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration</th>
<th>Mean ± SEM of diameter of zone of inhibition (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gram positive bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. subtilis</td>
</tr>
<tr>
<td>Methanolic extract (a)</td>
<td>1.25 mg/disc</td>
<td>6.5±0.12</td>
</tr>
<tr>
<td>Methanolic extract (b)</td>
<td>2.5 mg/disc</td>
<td>16.3±0.26</td>
</tr>
<tr>
<td>Methanolic extract (c)</td>
<td>5 mg/disc</td>
<td>20.0±0.38</td>
</tr>
<tr>
<td>Streptomycin (d)</td>
<td>10 µg/disc</td>
<td>24.7±0.11</td>
</tr>
</tbody>
</table>

Values are expressed as Mean ± S.E.M of triplicate measurements. A value of P< 0.05 was considered statistically significant (By one way ANOVA followed by Dunnett’s t-test).

FIGURE 1: ANTIMICROBIAL ACTIVITY OF METHANOLIC EXTRACT OF SEEDS OF PHYLA NODIFLORA LINN. WITH GRAM POSITIVE BACTERIA AND GRAM NEGATIVE BACTERIA.

Source of support: Nil, Conflict of interest: None Declared