ANTIMICROBIAL AND CYTOTOXIC PROPERTIES OF DIFFERENT EXTRACTS OF MUSA SAPIENTUM L. SUBSP. SYLVESTRIS

Imam Mohammad Zafar1*, Akter Saleha2, Mazumder Md. Ehsanul Hoque3, Rana Md. Sohel3
1Department of Pharmacy, Stamford University Bangladesh, Siddeswari, Dhaka, Bangladesh
2Department of Pharmacy, Primeasia University, Banani, Dhaka, Bangladesh
3Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh

Article Received on: 08/06/11 Revised on: 13/07/11 Approved for publication: 10/08/11

*Mohammad Zafar Imam, Lecturer, Department of Pharmacy, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka-1217, Bangladesh E-mail: zafarimam@gmail.com

ABSTRACT
The aim of this study was to evaluate the antimicrobial and cytotoxic properties of the different extracts of Musa sapientum L. subsp. sylvestris fruits. The methanolic extracts of Musa sapientum L. subsp. sylvestris peel (MSPE), pulp (MSPU) and seed (MSSE) were investigated for antimicrobial activity by disc diffusion method and for cytotoxic activity by Brine shrimp lethality bioassay. Good antimicrobial activity was shown by MSPE while moderate activity by MSPU against 5 gram-positive (Bacillus cereus, Bacillus megaterium, Bacillus subtilis, Sarcina lutea, Staphylococcus aureus) and 8 gram-negative (Escherichia coli, Salmonella paratyphi, Salmonella typhi, Shigella boydii, Shigella dysenteriae, Pseudomonas aeruginosa, Vibrio mimicus, Vibrio parahemolyticus) bacteria and 3 fungi (Aspergillus niger, Candida albicans, Sacharomyces cerevisaeae). Antimicrobial activity of MSSE against the organisms was insignificant. The order of Brine Shrimp lethality was found as Vincristine sulphate > MSPU > MSSE > MSPE. These findings suggest the potentiality of finding novel compounds with antimicrobial property in the investigated fruit.

KEY WORDS: Musa sapientum, antimicrobial, cytotoxicity.

INTRODUCTION
Different species of Musa genus (Family: Musaceae), commonly known as Banana, are native to the Asian, Indo-Malaysian and Australian tropics and are now widely found throughout the tropical and subtropical areas. In Bangladesh, bananas grow almost everywhere in the country throughout the year especially in Rangamati, Barisal, Rangpur, Dinajpur, Noakhali, Faridpur and Khulna1. Traditionally the banana fruits are used in diarrhoea, dysentery, intestinal lesions in ulcerative colitis, diabetes, sprue, uremia, nephritis, gout, hypertension, cardiac disease2,3. Carbohydrates4, norepinephrine, serotonin, dopamine5, tryptophan, indole compounds6, alkaloids, tannin, ascorbic acid, several flavonoids and related compounds (Leucocyanidin, quercetin and its 3-O-galactoside, 3-O-glucoside, and 3-O-rhamnonsyl glucoside) have been isolated from the pulp of plantain7,9. Sterols such as β-sitosterol, campesterol, stigmastosterol were isolated from the fruit, peel and plant10-12. Sitoindoside-I, sitoindoside-II, sitoindoside-III and sitoindoside-IV possessing antilucerogenic activity were isolated10. An antihypertensive principle, 7, 8-dihydroxy-3-methylisochroman-4-one, has been isolated from the fruit peel13. Musa sapientum L. subsp. sylvestris, commonly known as ‘Bichi kola’ or ‘Aitta kola’, is a treelike perennial herb that grows 5-9 m in height, with tuberous rhizome, hard, long pseudostem and big inflorescence with reddish brown bract. Musa sapientum L. subsp. sylvestris fruit is used (sometimes with seeds) in the treatment of diarrhoea and dysentery, in excess menstruation14. The fruit of Musa sapientum have been found to possess significant antiulcerant15, antibacterial16, wound healing17 and anti-allergic activity18. The flowers showed blood glucose and glycosylated haemoglobin reduction and hemoglobin increasing property19. The peel possesses diuretic property20 and the juice of the inflorescence stalk possesses cholesterol and triglyceride lowering activity21. The plant also showed antihyperglycemic effect in hyperglycemic rabbit22.

In the present study, methanolic extracts of Musa sapientum L. subsp. sylvestris fruit’s peel (MSPE), pulp (MSPU) and seed (MSSE) were investigated for antimicrobial and cytotoxic activity in order to justify and support the folkloric use of the fruit in diarrhoea and dysentery.
MATERIALS AND METHODS

Plant material and extraction

Mature and unripe fruits of *Musa sapientum* L. subsp. *sylvestris* were collected from Roypur village in Jibannagar Upazila, Chuadanga, Bangladesh in January 2009. The botanical identification was done by the experts of Bangladesh National Herbarium, Mirpur, Dhaka (DACB: 33833). The separated peel, pulp and seeds were dried, powdered and then extracted by Soxhlet apparatus using methanol. The methanolic extract of the peel, pulp and seed were used for the experiments.

Chemicals and animals

Dimethyl sulfoxide (DMSO) was purchased from Merck; vincristine sulphate was purchased from Sigma-Aldrich. The eggs of the brine shrimp (*Artemia salina* leach) were collected from a shop of University Market, Katabon, Dhaka, Bangladesh.

Phytochemical screening

Qualitative phytochemical tests were performed for the determination of presence of different class of constituents in the extract following standard procedures.

Test for antimicrobial activity

The antimicrobial activity test of the plant extracts were performed by the well accepted Bauer-Kirby method. The activity of the extracts were tested against 5 gram-positive bacteria (*Bacillus cereus*, *Bacillus megaterium*, *Bacillus subtilis*, *Sarcina lutea*, *Staphylococcus aureus*) and 8 gram-negative bacteria (*Escherichia coli*, *Salmonella paratyphi*, *Salmonella typhi*, *Shigella boydii*, *Shigella dysenteriae*, *Pseudomonas aeruginosa*, *Vibrio mimicus*, *Vibrio parahemolyticus*) and 3 pathogenic fungi (*Aspergillus niger*, *Candida albicans*, *Sacharomyces cerevaceae*). The sterilized Potato Dextrose Agar (PDA) media was mixed with the suspension of bacteria and fungi and transferred to petridishes. The test disc containing the sample was prepared by incorporating 400 µg of extract in a sterilized 6 mm metrical filter paper disc (BBL, Cocksville, USA). Then the test disc, blank disc (negative control) and the Kanamycin standard disc (30 µg/disc, Oxoid Ltd., UK) were placed gently on the previously marked zones in the agar plates pre-inoculated with test bacteria and fungi. The plates were then kept in a refrigerator at 4°C for about 24 h. Finally the plates were kept in an incubator at 37°C for 24 h. After incubation, the antimicrobial activities of the test materials were determined by measuring the diameter of the zones of inhibition in millimeter.

Brine Shrimp Lethality Bioassay

Brine shrimp lethality bioassay was used for exploring the potential cytotoxic action of the extracts according to the methods described by McLaughlin (1982). Eggs of *Brine Shrimp* were hatched in a tank containing 3.8% NaCl solution. The plant extracts were dissolved in pure dimethyl sulfoxide (DMSO) and test solutions of different concentrations (1 µg/ml, 5 µg/ml, 10 µg/ml, 20 µg/ml, 50 µg/ml, 100 µg/ml, 200 µg/ml, 500 µg/ml) were prepared and were taken in vials containing 10 nauplii in 5 ml of simulated sea water. The toxic effect of the extract or reference drug on shrimp was observed after 24 h counting the surviving shrimps. Duplicate experiments were done for each concentration of extracts. The percent (%) mortality was calculated first and then LC50 values were calculated to determine the toxicity of the extracts. Vincristine sulphate was used as the reference cytotoxic drug.

Statistical analysis

LC50 of the cytotoxic activity test were calculated by regression analysis using SPSS 11.5.0 (Statistical Package for the Social Sciences) for windows (SPSS Inc., USA).

RESULTS

Phytochemical screening

Qualitative phytochemical analysis of the methanolic extract of *Musa sapientum* subsp. *sylvestris* fruit peel, pulp and seed revealed the presence of carbohydrates, alkaloids, steroids and glucosides in all extracts. Flavonoids were detected in pulp, saponin in peel and seed and tannin in peel and pulp extracts.

Antimicrobial activity

In the antimicrobial study it was observed that the methanolic extract of the *M. sapientum* subsp. *sylvestris* pulp showed good activity against all 13 gram-positive and gram-negative bacteria. The peel extract also showed significant activity against all organisms in the test. But the seed extract showed virtually no activity against any organism (Table 1). The standard drug, Kanamycin, showed 29-31 mm zone of inhibition against the gram-positive and gram-negative bacteria (Table 1). The pulp extract showed 19 mm zone of inhibition against *Shigella dysenteriae*, 18 mm zone of inhibition against *Bacillus subtilis* and *Salmonella paratyphi*. It showed 17 mm zone of inhibition against *Bacillus cereus*, *Bacillus megaterium*, *Escherichia coli*, *Shigella boydii*, *Vibrio mimicus* and *Vibrio parahemolyticus*; 16 mm against *Sarcina lutea*, *Pseudomonas aeruginosa*, *Salmonella typhi*; 15 mm against *Staphylococcus aureus*. The peel extract also showed activity against all the test organisms with a zone of inhibition of 7-9 mm. The pulp extract...
was also found well effective in inhibiting the growth of the 3 pathogenic fungi (Table 2).

Cytotoxic activity

The peel, pulp and seed extracts were found lethal to brine shrimp with a LC₅₀ value of 304.4 µg/ml, 112.4 µg/ml and 212.02 µg/ml respectively, while the standard Vincristine sulphate showed a LC₅₀ value of 0.66 µg/ml. The pulp showed better lethality to the shrimps than the peel and seed extract (Table 3). The order of potential lethality of the extracts is: Vincristine sulphate> Pulp> Seed> Peel.

DISCUSSION

The results suggest the wide range of antibacterial activity by the fruit pulp extract against a number of pathogenic bacteria, especially those cause diarrhoea and dysentery. The alkaloids present in the extracts may contribute to the antibacterial activity due to the inhibition of topoisomerase to intercalate DNA and to inhibit DNA synthesis, cell lysis and morphological changes. The tannin content of the pulp may also contribute to the antimicrobial activity due to their astringent property that can induce complexation with microbial enzymes or substrates, iron deprivation, hydrogen bonding or nonspecific interaction with microbial enzymes, toxic action on microbial membranes, complexion of metal ions. The antimicrobial activity may also be due to the presence of flavonoids, saponins and steroids. The brine shrimp lethality bioassay can detect a broad spectrum of bioactive principles in crude samples for the front-line screening. This method is very useful and is being used in predicting cytotoxic, antitumor and pesticidal activity of extracts. The phytochemicals present in the extracts such as alkaloids, steroids may be responsible for the cytotoxic activity of extracts. The cytotoxic activity of the pulp and peel extracts further supports the antibacterial activity of the extracts.

CONCLUSION

The findings of the present study demonstrate that the methanolic extracts of *Musa sapientum* L. subsp. *sylvestris* fruit possess good antimicrobial activity against a number of gram-positive and gram-negative bacteria as well as against pathogenic fungi and affirm the traditional use of the fruit in the treatment of dysentery and diarrhoea. However, further studies are required to study the bioactive compounds and elucidate the mechanisms of pharmacological activities of the plant.

REFERENCES

Table 1: Antibacterial activity of methanolic extracts of Musa sapientum subsp. sylvestris.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Diameter of zone of inhibition (mm)</th>
<th>MSPE (400 μg/disc)</th>
<th>MSPU (400 μg/disc)</th>
<th>MSSE (400 μg/disc)</th>
<th>Kanamycin (30 μg/disc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram-positive bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td></td>
<td>9</td>
<td>17</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Bacillus megaterium</td>
<td></td>
<td>8</td>
<td>17</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td></td>
<td>9</td>
<td>18</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
<td>8</td>
<td>15</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Sarcina lutea</td>
<td></td>
<td>7</td>
<td>16</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>Gram-negative bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td></td>
<td>8</td>
<td>17</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td></td>
<td>8</td>
<td>16</td>
<td>-</td>
<td>29</td>
</tr>
<tr>
<td>Salmonella paratyphi</td>
<td></td>
<td>9</td>
<td>18</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td></td>
<td>7</td>
<td>16</td>
<td>-</td>
<td>29</td>
</tr>
<tr>
<td>Shigella boydi</td>
<td></td>
<td>8</td>
<td>17</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Shigella dysenteriae</td>
<td></td>
<td>8</td>
<td>19</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Vibrio mimicus</td>
<td></td>
<td>8</td>
<td>17</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Vibrio parahemolyticus</td>
<td></td>
<td>8</td>
<td>17</td>
<td>4</td>
<td>31</td>
</tr>
</tbody>
</table>

MSPE = Musa sapientum subsp. sylvestris peel extract, MSPU = Musa sapientum subsp. sylvestris pulp extract, MSSE = Musa sapientum subsp. sylvestris seed extract.

Table 2: Antifungal activity of methanolic extracts Musa sapientum L. subsp. sylvestris.

<table>
<thead>
<tr>
<th>Fungi</th>
<th>Diameter of zone of inhibition (mm)</th>
<th>MSPE</th>
<th>MSPU</th>
<th>MSSE</th>
<th>Kanamycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus niger</td>
<td></td>
<td>8</td>
<td>18</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Candida albicans</td>
<td></td>
<td>8</td>
<td>19</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td></td>
<td>7</td>
<td>16</td>
<td>-</td>
<td>28</td>
</tr>
</tbody>
</table>

MSPE = Musa sapientum subsp. sylvestris peel extract, MSPU = Musa sapientum subsp. sylvestris pulp extract, MSSE = Musa sapientum subsp. sylvestris seed extract.

Table 3: Cytotoxic activity of methanolic extracts of Musa sapientum subsp. sylvestris.

<table>
<thead>
<tr>
<th>Extract</th>
<th>LC₅₀ (μg/ml)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MSPE</td>
<td>304.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSPU</td>
<td>112.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSSE</td>
<td>212.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincristine sulphate</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MSPE = Musa sapientum subsp. sylvestris peel extract, MSPU = Musa sapientum subsp. sylvestris pulp extract, MSSE = Musa sapientum subsp. sylvestris seed extract.

Source of support: Nil, Conflict of interest: None Declared