COMPARATIVE STUDY ON EFFECT OF SOLID DISPERSION TECHNIQUES FOR ENHANCEMENT OF DISSOLUTION RATE OF PIOGLITAZONE HCI

Mishra Sruti Ranjan*, Ellaiah P.¹, Jena Prabhat Kumar¹, Nayak Bhabani Shankar¹ and Mishra Gitanjali²

¹Department of Pharmaceutics, Faculty in Pharmacy, Jeypore College of Pharmacy, Rondapalli, Jeypore, Koraput, Odisha, India
²P.G. Department of Zoology, Berhampur University, Bhanja Bihar, Berhampur, Ganjam, Odisha, India

Article Received on: 12/06/11 Revised on: 09/07/11 Approved for publication: 09/08/11

*Sruti Ranjan Mishra, Jeypore College of Pharmacy, Rondapalli, Jeypore – 764002, Koraput, Odisha, India
E Mail: srmishra2011@yahoo.com

ABSTRACT

Pioglitazone hydrochloride is a novel antidiabetic drug in thiazolidinediones group and it improves insulin sensitivity in insulin resistant patients. One of the major problems with this drug is its low solubility in biological fluids, which results into poor bioavailability after oral administration. The present study is an attempt to enhance the dissolution rate of pioglitazone HCl by kneading and physical mixture techniques using pioglitazone HCl and β-cyclodextrin as carrier in the ratios of 1:1, 1:2 and 1:3 respectively. The drug carrier interaction study was carried out by Fourier Transform Infrared Spectroscopy (FTIR). The prepared solid dispersions were characterized for percentage yield, bulk density, tapped density, Carr’s Index, Hausner’s ratio, angle of repose, drug content, drug dissolution and stability study. The FTIR study suggesting no interaction between drug and carrier of solid dispersion. The kneading and physical mixture techniques were found to be efficient method to obtained good yield solid dispersions with good flow properties. The drug content was found in the ranges of 77.2±0.28 to 88.8±0.19 %. Dissolution study revealed that there is marked enhancement in the dissolution rate of pioglitazone from all the solid dispersions when compared to pure pioglitazone itself. From the in vitro drug release profile, it can be seen that formulation F1 (1:1 ratio of drug: β-cyclodextrin, prepared by kneading technique) shows higher dissolution rate compared with other formulations. All pioglitazone solid dispersions were found to be stable in various storage temperatures. The kneading is suitable method for development of solid dispersion of pioglitazone HCl.

KEYWORDS: Pioglitazone HCl, β-cyclodextrin, Kneading, physical mixture, antidiabetic, bioavailability.

INTRODUCTION

Oral bioavailability of drugs depends on its dissolution rate, therefore major problems associated with these drugs was its very low aqueous solubility, which results into poor bioavailability after oral administration. Many methods are available to improve dissolution rate, solubility characteristics, including salt formation, micronization, and addition of solvent or surface active agents. Solid dispersions prepared by kneading and physical mixture methods, which were most widely and successfully applied to improve the solubility, dissolution rates and consequently the bioavailability of poorly soluble drugs. Several water soluble carriers such as mannitol, urea, lactose, citric acid, polyvinyl pyrrolidone, β-cyclodextrin and polyethylene glycols are used as carriers for enhancement of aqueous solubility. Pioglitazone hydrochloride is a thiazolidinedione antidiabetic agent that decreases insulin resistance in the periphery and in the liver resulting in increased insulin-dependent glucose disposal and decreased hepatic glucose output. Pioglitazone is a potent and highly selective agonist for peroxisome proliferator-activated receptor-gamma. The solid dispersions of pioglitazone solve the problems like gastrointestinal disturbances, headache, dizziness, fatigue and insomnia. Pioglitazone is practically insoluble in water; this prompted us to investigate the possibility of improving the solubility of drug by preparing and evaluating solid dispersion of pioglitazone prepared by kneading and physical mixture techniques with water-soluble carrier β-cyclodextrin and to evaluate effect of solid dispersion techniques on the enhancement of dissolution profile of poorly water soluble pioglitazone HCI.

MATERIALS AND METHOD

Pioglitazone HCI was obtained as gift sample from Cipla Ltd., Baddi, Himachal Pradesh, India. β-cyclodextrin was procured from Loba Chemie Pvt. Ltd., Bangalore, India. All other chemicals and reagents used were of analytical grade and procured from authorized dealer.
Preparation of solid dispersion by kneading technique
The kneading complexes were prepared using pioglitazone HCl as drug and β-cyclodextrine as carrier in the ratios of 1:1, 1:2 and 1:3 (F1, F2 and F3) respectively. The pure drug of pioglitazone HCl was considered as formulation F0. The required quantity of carrier (β-cyclodextrin) was weighed in electronic digital balance (Sartorius Electronic balance, BT-2245, Calcutta, West Bangle, India), taken in a mortar and it was dissolved in methanol by using pestle. Accurately weighed quantity of drug was then added to methanol solution of carrier. The dispersion was then continuously stirred to form a paste was prepared. Above paste thus prepared was kneaded properly and kneaded complex was dried properly using Hot air oven (Rolex Pvt. Ltd., Calcutta, West Bangle, India) at 45°C for 1 h. The dried kneaded complex was passed through sieve no 80 and stored in a desiccator for further study.

Preparation of solid dispersion by physical mixture
The physical mixtures were prepared using pioglitazone HCl as drug and β-cyclodextrine as carrier in the ratios of 1:1, 1:2 and 1:3 (F4, F5 and F6) respectively. The required quantity of carrier (β-cyclodextrin) was weighed in electronic digital balance (Sartorius Electronic balance, BT-2245, Calcutta, West Bangle, India), taken in a mortar and it was mixed with weighed quantity of drug with geometric dilution method. The mixture was then continuously mixed in a Pneumatic mixer (Rolex Pvt. Ltd., Calcutta, West Bangle, India) to form a homogeneous physical mixture. The physical mixture was dried properly using Hot air oven (Rolex Pvt. Ltd., Calcutta, West Bangle, India) at 45°C for 1 h. The dried mixture was passed through sieve no 80 and stored in a desiccator for further study.

Characterization of pioglitazone HCl solid dispersions
Fourier transforms Infrared radiation (FT-IR) studies.
The FT-IR (Shimadzu IR spectrophotometer, model 840, Japan) was used for these IR analyses in the frequency range between 4000 and 600 cm⁻¹ and at 1 cm⁻¹ resolution. The samples of pure drug pioglitazone, β-cyclodextrin and solid dispersions of drug-carrier were prepared separately by palletization technique in KBr using IR press. The IR peaks of pure pioglitazone were analyzed and were compared with the peaks obtained from FTIR spectra of solid dispersions.

Percentage yield
The yield was calculated as the weight of the solid dispersion obtained from each batch divided by total weight of drug and carrier incorporated multiplied by 100. The percentage yields of each formulation were replicated three times.

Flow properties
Flowability of solid dispersions was investigated by determining angle of repose, bulk density, tapped density, Carr’s index and Hausner ratio. The angle of repose was determined by fixed funnel method. The solid dispersions were tapped using bulk density apparatus (Excel Enterprises, Kolkata, West Bangle, India) for 100 taps in a cylinder and the change in volume were measured. Carr’s index and Hausner ratio were calculated by the formula: Carr’s index (%) = [(Df-D0) / Df] ×100 and Hausner ratio = Df / Db, Where, Df is tapped density; D0 is poured density. All the experimental units were studied in triplicate (n=3).

Drug content
Solid dispersion of each formulation equivalent to 25 mg of pioglitazone HCl was accurately weighed and it was dissolved in methanol. The solution was filtered through Whatmann filter paper no 1. The filtrate solution was suitably diluted with 0.1N HCl. Then the amount of drug present in solution was analyzed by using UV-Visible spectrophotometer (Shimadzu UV spectrophotometer, model 1700, Japan) at λmax 269 nm. All the experimental units were studied in triplicate (n=3).

In vitro drug release study
The release profile of an entrapped drug predicts how a delivery system might function and gives valuable insight into its in vivo behavior. In vitro release profile for each solid dispersions as well as pure drug was performed using USP XXII type 2 dissolution apparatus (IP/ BP/ USP 8 paddle Digital Test Apparatus, Scientific Engineering Corporation Ltd., New Delhi, India). Sample equivalent to 30 mg of pioglitazone was added to 900 ml 0.1N HCl at (37±0.5)°C and stirred at 50 rpm. An aliquot sample (5 ml) was withdrawn at an interval of 15 min with replacement of fresh medium and each drug solution was analyzed for pioglitazone content by UV-Visible spectrophotometer at 269 nm. The same method was adopted for each formulation of solid dispersion. All the experimental units were studied in triplicate (n=3).

Accelerated stability study
Stability studies were performed according to ICH guidelines. The formulations were stored in hot air oven at (37±2, 45±2 and 60±2) °C for a period of 12 weeks. The samples were analyzed for drug content every two weeks by UV-Visible spectrophotometer at 269 nm.

Statistical analysis
Each value is expressed as mean ± standard deviation (n = 6). For determining the statistical significance, standard error mean and one way analysis of variance
(ANOVA) at 5 % level significance was employed. P values < 0.05 were considered significant\cite{16}.

RESULTS AND DISCUSSION

The kneading and physical mixtures were found to be efficient methods to obtain good yield solid dispersions. The interaction between the drug and the carrier often leads to identifiable changes in the FTIR profile of solid systems. FTIR spectra at 45 scans and a resolution of 1 cm\(^{-1}\) were recorded in KBr pellets for pure drug (Fig 1A), polymer (β-cyclodextrine) (Fig 1B) and the solid dispersion as represented in Fig 1C. The spectrum of solid dispersion formulation was equivalent to the addition spectrum of polymer and drug indicating no interaction occurring in the solid dispersion of drug and polymer. The yields of all the formulations were good and satisfactory as shown in Table 1. The yields varied from 97.05±0.26 to 99.82±0.09 %, suggesting that the processing parameters did not affect the yield from the solid dispersions prepared by both methods. The bulk density, tapped density, angle of repose, Hausner’s ratio and Carr’s index values of the prepared solid dispersion are represented in Table 2. The bulk density was found in the ranges of 0.78±0.22 to 0.93±0.33 g/cc. The solid dispersion of all formulations had Hausner’s ratio of 1.225 or less indicating good flowability. The Carr’s index was found between 7.920 to 18.367 indicating good flowability except F1 (Drug: polymer ratio 1:1, solid dispersions prepared by kneading method) which shows excellent flow property. The good flowability of the solid dispersion was also evidenced with angle of repose within range of 21.2±0.29 to 29.82±0.26\(^{o}\), which is below 30\(^{o}\) indicating good flowability. Relatively high drug content was observed for each formulation as presented in Table 2. The drug content was found in the ranges of 77.2±0.28 to 88.8±0.19 %. The maximum drug content was obtained with formulation F1 being prepared by Kneading technique. The in vitro drug release studies of acquired solid dispersions were shown in Table 2 and Fig 2. Cumulative percent drug released after 45 min was 99.1±1.45, 76.2±1.21, 97.3±1.09, 75.9±1.25, 39.1±1.32 and 45.4±1.02% for F1, F2, F3, F4, F5 and F6 respectively, where as pure drug pioglitazone was releasing only 8.19±0.78 % in 45 min. In vitro release studies reveal that there is marked enhancement in the dissolution rate of pioglitazone from all the solid dispersions when compared to pure pioglitazone itself. From the in vitro drug release profile, it can be seen that formulation F1 (1:1 ratio of drug: β-cyclodextrine, prepared by kneading technique) shows higher dissolution rate compared with other formulations. This may be attributed to the increase in drug wettability, conversion to amorphous form and solubilization of the drug due to hydrophilic carrier. The accelerated stability studies were performed according to ICH guidelines for 12 weeks and the results were found to be stable in varying temperature as shown in Table 3. Data are found to be statistically significant (\(F\) value < \(F\) crit) by testing through one way ANOVA at 5 % level of significance (p < 0.05 that is p = 0.02811656).

CONCLUSION

The study concluded that the solid dispersion prepared by kneading method (F2, 1:1 ratio of drug: β-cyclodextrine) shows higher dissolution rate compared with other formulations and pure drug. The study shows that the dissolution rate of pioglitazone can be enhanced to a great extent by solid dispersion technique. The study result concluded that the kneading technique is suitable for development of solid dispersions of pioglitazone HCl. It is, however, suggested that further research on large scale be carried out by using other hydrophilic carrier.

ACKNOWLEDGEMENT

Authors wish to thank Cipla Ltd., Baddi, Himachal Pradesh, India for providing pioglitazone as gift sample. Authors also wish to thanks Jeypore College of Pharmacy authority for providing facility to carry out this research work.

REFERENCES


Table 1. Formulation design of pioglitazone solid dispersions with β-cyclodextrin.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Formulation code</th>
<th>Drug: carrier</th>
<th>Drug (g)</th>
<th>Carrier (g)</th>
<th>Yield (%) (X±S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F1</td>
<td>1:1</td>
<td>1.5</td>
<td>1.5</td>
<td>99.12±0.34</td>
</tr>
<tr>
<td>2</td>
<td>F2</td>
<td>1:2</td>
<td>1</td>
<td>2</td>
<td>97.82±0.51</td>
</tr>
<tr>
<td>3</td>
<td>F3</td>
<td>1:3</td>
<td>0.75</td>
<td>2.25</td>
<td>97.05±0.26</td>
</tr>
<tr>
<td>4</td>
<td>F4</td>
<td>1:1</td>
<td>1.5</td>
<td>1.5</td>
<td>99.52±0.12</td>
</tr>
<tr>
<td>5</td>
<td>F5</td>
<td>1:2</td>
<td>1</td>
<td>2</td>
<td>99.82±0.09</td>
</tr>
<tr>
<td>6</td>
<td>F6</td>
<td>1:3</td>
<td>0.75</td>
<td>2.25</td>
<td>98.89±0.02</td>
</tr>
</tbody>
</table>

Each value is expressed as mean ± standard deviation (n = 3). Standard error of mean < 0.294.

Table 2. Flow properties, drug content and in vitro drug release study of various pioglitazone HCl solid dispersions.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk density (g/cc) (X±S.D.)</td>
<td>0.93±0.33</td>
<td>0.82±0.13</td>
<td>0.81±0.42</td>
<td>0.78±0.22</td>
<td>0.80±0.31</td>
<td>0.81±0.14</td>
</tr>
<tr>
<td>Tapped density (g/cc) (X±S.D.)</td>
<td>1.01±0.22</td>
<td>0.98±0.18</td>
<td>0.97±0.31</td>
<td>0.94±0.21</td>
<td>0.98±0.31</td>
<td>0.96±0.23</td>
</tr>
<tr>
<td>Carr’s Index (%)</td>
<td>7.920</td>
<td>16.326</td>
<td>16.992</td>
<td>17.021</td>
<td>18.367</td>
<td>15.625</td>
</tr>
<tr>
<td>Hausner’s ratio</td>
<td>1.086</td>
<td>1.041</td>
<td>1.197</td>
<td>1.205</td>
<td>1.225</td>
<td>1.185</td>
</tr>
<tr>
<td>Angle of repose (°) (X±S.D.)</td>
<td>21.2±0.22</td>
<td>26.4±0.32</td>
<td>28.3±0.42</td>
<td>25.7±0.44</td>
<td>26.8±0.39</td>
<td>29.8±0.26</td>
</tr>
<tr>
<td>Flow comment</td>
<td>Excellent</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Drug content (%) (X±S.D.)</td>
<td>88.8±0.19</td>
<td>85.6±0.14</td>
<td>79.8±0.31</td>
<td>86.2±0.19</td>
<td>82.3±0.21</td>
<td>77.2±0.28</td>
</tr>
<tr>
<td>Cumulative % drug release (X±S.D.)</td>
<td>99.1±1.45</td>
<td>76.2±1.21</td>
<td>97.3±1.09</td>
<td>75.9±1.25</td>
<td>39.1±1.32</td>
<td>45.4±1.02</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>156.3875</td>
<td>5</td>
<td>31.2775</td>
<td>0.433151</td>
<td>0.02811656</td>
<td>4.387374</td>
</tr>
<tr>
<td>Within Groups</td>
<td>433.255</td>
<td>6</td>
<td>72.20917</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>589.6425</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each value is expressed as mean ± standard deviation (n = 3). Standard error of mean < 0.837. Data are found to be significant (F value < F crit) by testing through one way ANOVA at 5 % level of significance (p < 0.05 that is p = 0.02811656).
Table 3. Stability study of various pioglitazone HCl solid dispersions as per ICH guidelines.

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Storage Temp. (°C)</th>
<th>Potency of formulation (%)</th>
<th>Period of studies in week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1st day</td>
</tr>
<tr>
<td>F1</td>
<td>37 ± 1</td>
<td>99.76</td>
<td>99.61</td>
</tr>
<tr>
<td></td>
<td>45 ± 1</td>
<td>99.46</td>
<td>99.37</td>
</tr>
<tr>
<td></td>
<td>60 ± 1</td>
<td>99.26</td>
<td>99.08</td>
</tr>
<tr>
<td>F2</td>
<td>37 ± 1</td>
<td>99.16</td>
<td>99.11</td>
</tr>
<tr>
<td></td>
<td>45 ± 1</td>
<td>99.06</td>
<td>99.00</td>
</tr>
<tr>
<td></td>
<td>60 ± 1</td>
<td>99.04</td>
<td>98.88</td>
</tr>
<tr>
<td>F3</td>
<td>37 ± 1</td>
<td>99.06</td>
<td>98.91</td>
</tr>
<tr>
<td></td>
<td>45 ± 1</td>
<td>98.56</td>
<td>99.47</td>
</tr>
<tr>
<td></td>
<td>60 ± 1</td>
<td>98.56</td>
<td>98.38</td>
</tr>
<tr>
<td>F4</td>
<td>37 ± 1</td>
<td>99.97</td>
<td>99.81</td>
</tr>
<tr>
<td></td>
<td>45 ± 1</td>
<td>99.69</td>
<td>99.57</td>
</tr>
<tr>
<td></td>
<td>60 ± 1</td>
<td>99.33</td>
<td>99.28</td>
</tr>
<tr>
<td>F5</td>
<td>37 ± 1</td>
<td>99.56</td>
<td>99.31</td>
</tr>
<tr>
<td></td>
<td>45 ± 1</td>
<td>99.26</td>
<td>99.11</td>
</tr>
<tr>
<td></td>
<td>60 ± 1</td>
<td>99.14</td>
<td>99.08</td>
</tr>
<tr>
<td>F6</td>
<td>37 ± 1</td>
<td>99.26</td>
<td>99.11</td>
</tr>
<tr>
<td></td>
<td>45 ± 1</td>
<td>98.96</td>
<td>99.77</td>
</tr>
<tr>
<td></td>
<td>60 ± 1</td>
<td>98.66</td>
<td>98.42</td>
</tr>
</tbody>
</table>

Potency has been expressed in terms of percentage drug content for period of 12 weeks.

Fig 1A. FTIR spectra of pure drug pioglitazone HCl in the frequency range between 4000 and 600 cm⁻¹ and at 1 cm⁻¹ resolution.

Fig 1B. FTIR spectra of carrier β-cyclodextrine in the frequency range between 4000 and 600 cm⁻¹ and at 1 cm⁻¹ resolution.
Fig 1C. FTIR spectra of pioglitazone β-cyclodextrine solid dispersion in the frequency range between 4000 and 600 cm\(^{-1}\) and at 1 cm\(^{-1}\) resolution.

Fig 2. *In vitro* drug release profile of pioglitazone solid dispersions in 0.1N HCl.

F0 – Pioglitazone HCl pure drug.

Source of support: Nil, Conflict of interest: None Declared