SYNTHESIS AND EVALUATION OF ANTIMICROBIAL ACTIVITY OF 1-BENZOYL-1H-PYRAZOLE [4,3-C]QUINOLIN-4(5H)-ONES

Shivashankar Murugesh*, Mandal Badal Kumar, Arul prakash G

1Pharmaceutical Chemistry Division School of Advanced Sciences, VIT University, Vellore, India

* Murugesh Shivashankar, Assistant Professor, Pharmaceutical Chemistry Division School of Advanced Sciences, VIT University, Vellore, India Email: mshivashankar@vit.ac.in

Article Received on: 05/01/11 Revised on: 19/01/11 Approved for publication: 23/01/11

ABSTRACT
A series of 1-benzoyl-1H-pyrazolo [4,3-c]quinolin-4(5H)-one, carrying appropriate substituents at the Quinoline ring have been synthesized in good yields via the condensation of 4-chloro-3-formylquinolin-2[1H]ones with benzohydrazide using triethylamine as a base. All the synthesized compounds were evaluated for their antibacterial activities.

KEYWORDS: 2,4-Dichloroquinolines, 4-chloro-3-formylquinolin-2-[1H] ones, Pyrazolo quinoline, antimicrobial activity.

INTRODUCTION
The prominence, structural diversity and biological importance of quinolin-2(1H)-one have made them attractive target for synthesis over many years1. Pyrazolo[4,3-c]quinolin-4(5H)-one form a class of fused heterocyclic compounds which reveal interesting pharmacological and biological properties. They have used as effective antitumor agents, antibacterial, anticonvulsant and antimalarial agents2-5. Due to their excellent biological activities they have been subjected to extensive experimental studies.Tetracyclic system the Quinoline moiety are expected to have wide-spectrum biological activity, methods to constructs the teta cyclic pyrazolotriazinoquonoine system are reported in the journal6. The authors prepared novel heterocyclic ring system containing the Quinoline skeleton with potential pharmaceutical activity912, Pyrazoloquinoline derivative have useful biological properties as an anti tumor reagent and are active agent for the treatment of herpes virus infection,Pyrazolotriazines also have considerable biological and medicinal activities as antitumor13,anti-inflammatory14 and antiviral agent A literature search reveled that 1-Benzoyl-1H-Pyrazole –(4,3-c)Quinoline-4(5H)-ones have largely ignored we envisaged that reaction of 4-chloro-3-formyl Quinoline-2(1H)one of benzoylhydrazide in the presence of absolute ethanol and catalyze the amount of triethylamine was added to reflux over the steam both for 5-6 hour results in the formation of resulting compound To the best of our knowledge, there are no report on the synthesis of the reported compound In the present communication we report the synthesis and antimicrobial evaluation of 1-benzoyl-1H-pyrazolo[4,3-c]quinolin-4(5H)-ones(4a-e)

MATERIAL AND METHODS
General consideration
IR spectra were recorded on a Thermo Nicolet- Model Avatar 330 in KBr pellets. 1H NMR spectra were recorded on JEOL GSX 400 in CDCl3 as solvent.
Starting compounds were synthesized according to the literature procedure
Preparation of 1-benzoyl-1H-pyrazolo [4, 3-c] quinolin-4(5H)-ones [4a]
(0.001 mole) 4-Chloro-3-formylquinolin-2[1H]one 3a of benzoylhydrazide (0.001 mole) in the presence of absolute ethanol (20 mL) and catalytic amount of triethylamine was added to reflux over the steam bath for 5-6 hours. After the completion of the reaction, the excess solvent was removed. The reaction mixture poured into crushed ice and filtered, evaporated to dryness. Product was recrystallized in ethanol.
Similar procedure was followed for other compound 4b-4e.

Scheme 1: Synthetic route for 1-benzoyl-1H-pyrazolo [4, 3-c] quinolin-4(5H)-one derivatives.

RESULT AND DISCUSSION
1-benzoyl-1H-pyrazolo [4, 3-c] quinolin-4(5H)-one 4a was synthesized by the condensation reaction of 4-chloro-3-formylquinolin-2[1H] one 3a with benzohydrazide in absolute ethanol and in presence of catalytic amount of triethylamine. Benzohydrazide was prepared by refluxing hydrazine hydrate and methylbenzoate in the presence of absolute ethanol as per the reported procedure. The compound 3a was in turn prepared from dichloroquinoline 1a as per the reported procedure. The 1H NMR spectrum in CDCl3 of 4a showed signals at δ 7.20-7.70(m, 9H, Ar-H); 8.20(s, 1H, C3-H); 12.10(s, 1H, NH). The appearance of sharp aldehyde proton peak at δ 10.12 in compound 3a was not seen in 4a. Instead the aldehyde proton appeared at δ 8.20 as singlet in compound 4a. This clearly indicates that aldehyde carbonyl got disturbed and it supports the structure of the title compound 1-benzoyl-1H-pyrazolo [4, 3-c] quinolin-4(5H)-one 4a its physical data and spectroscopic data was shown in Table 1.

Antibacterial Activity
All the synthesized compounds were screened for their antibacterial activity by disc diffusion method. Staphylococcus aureus, Escherichia coli and Bacillus subtilis were used as test organisms. The discs (6mm in diameter) impregnated with 10μl of the test compounds (500 μg/disc) at the concentration of 50mg/ml were placed on the inoculated agar. DMF was employed as the solvent to dissolve the test compound and negative control. Ofloxacin (5 μg/disc) were used as positive reference standards to determine the sensitivity of each microbial species tested. The inoculated plates were incubated at 37°C for 24 hours. Antimicrobial activity was evaluated by measuring the diameter of zone of inhibition against test organisms. Based on the results (Table-2), it is evident that compound 4d and 4e have significant inhibition effect on the growth of bacteria like Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The compound 4a and 4b were active against Escherichia coli and Bacillus subtilis whereas compound 4c registered good antibacterial against Escherichia coli and Staphylococcus aureus.

CONCLUSION
In conclusion, 1-benzoyl-1H-pyrazolo[4,3-c]quinolin-4(5H)-one 4a-e were synthesized and evaluated for their antimicrobial activities. All the compounds were found to possess moderated antibacterial activity when compared to the standard.

ACKNOWLEDGEMENT
We thank DRDO for funding (ERIP/ER/0504334/M/01/890) and VIT University, Vellore, Tamil nadu for lab facilities. We also thank IIT madras for NMR data.
REFERENCES
15. RW Baldwin, MW Partridge and MFG Stereus J Pharm Pharmacol Suppl 1996 ;18 : 1

Table 1: Physical and spectroscopic data of compound (4a-e)*

<table>
<thead>
<tr>
<th>Compound</th>
<th>m.p °C</th>
<th>Yield (%)</th>
<th>IR cm⁻¹</th>
<th>'H NMR δ (δppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>>300</td>
<td>(76)</td>
<td>3200-3000(NH)</td>
<td>7.20-7.70(m,9H,Ar-H); 1695(NHC=O) 8.20(s,1H,C₃-H)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1590(C=N) 12.10(s,1H,NH)</td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>>300</td>
<td>(65)</td>
<td>3200-3000(NH)</td>
<td>2.35(s,3H,C₆-CH₃);7.15-7.76(m,8H,Ar-H); 1701(NHC=O) 8.22(s,1H,C₃-H); 1610(C=N) 12.01(s,1H,NH)</td>
</tr>
<tr>
<td>4c</td>
<td>270-272</td>
<td>(60)</td>
<td>3250-3100(NH)</td>
<td>3.81(s,3H,C₆-OCH₃);7.20-7.91(m,8H,Ar-H)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1690(C=O) 8.25(s,1H,C₃-H); 1585(C=N) 12.14(s,1H,NH)</td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td>280(d)</td>
<td>(70)</td>
<td>3300-2900 (NH)</td>
<td>7.60-8.01(m,8H,Ar-H); 1710(C=O) 8.21(s,1H,C₃-H); 1610(C=N) 12.10(s,1H,NH)</td>
</tr>
<tr>
<td>4e</td>
<td>288-290</td>
<td>(68)</td>
<td>3300-3000(NH)</td>
<td>7.30-8.25(m,8H,Ar-H); 1705(NHC=O) 8.44(s,1H,C₃-H); 1595(C=N) 11.92(s,1H,NH)</td>
</tr>
</tbody>
</table>

1) K.Br pellet 2) CDCl₃
Table 2: Antibacterial activity (4a-e)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Escherichia coli</th>
<th>Bacillus subtilis</th>
<th>Staphylococcus aureus</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>7</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>4b</td>
<td>6</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>4c</td>
<td>9</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>4d</td>
<td>11</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>4e</td>
<td>12</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Oflaxacin (Standard)</td>
<td>22</td>
<td>21</td>
<td>23</td>
</tr>
</tbody>
</table>

Figure 1: FTIR Spectra of Compound- 2b
Figure 2: FTIR Spectra of Compound- 3b
Figure 3: FTIR Spectra of Compound- 4 b
Figure 4: 1H NMR & 13C NMR of 6-methyl-2, 4-dichloroquinoline, 1b
Figure 5: 1H NMR & 13C NMR of 6-methyl-2, 4-dichloroquinoline, 1b
Figure 6: 1H NMR of 1-benzoyl-8-methyl-IH-pyrazolo [4, 3-c]quinolin-4(IH)-one, 4b

Source of support: Nil, Conflict of interest: None Declared