INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

Available online www.irjponline.com

ISSN 2230 – 8407 Review Article

ANTIMICROBIAL HERBAL DRUGS

K. Nishteswar*

Professor & H.O.D., Dravyaguna Dept., IPGT&RA, Gujrat Ayurved University, Jamnagar, India

Article Received on: 06/10/11 Revised on: 11/11/11 Approved for publication: 06/12/11

*Email: nishteswar@yahoo.co.in

ABSTRACT

An anti-microbial is a substance that kills or inhibits the growth of microorganisms such as bacteria, fungi, or protozoans. Antimicrobial drugs either kill microbes (microbiocidal) or prevent the growth of microbes (microbiostatic). Sulphonamide drugs were the first antimicrobial drugs, and paved the way for the antibiotic revolution in medicine. The first sulfonamide, trade named Prontosil, was actually a prodrug. However, with the development of antimicrobials, microorganisms have adapted and become resistant to previous antimicrobial agents. In view of certain side effects caused due to usage of modern antimicrobial drugs and antibiotics scientists have made some attempts to screen some of the Ayurvedic herbs, which possess broader spectrum of safety. Some selected herbs which are used by tribal and rural people for curing various infective diseases caused due to bacteria, virus and fungi have been reported to possess anti-microbial properties. In the present paper and attempt is made to review about the indigenous medicinal plant which exhibited antimicrobial properties.

Keywords: Antimicrobial, Krimighna, Aupasargika roga.

INTRODUCTION

In the long pre-ehrlich era (before 1891 AD) many compounds were employed in therapeutics empirically and the treatment of Malaria with cinchona and use of mercury in syphilis were a few treatment regimens available during that period. After 1935 AD, a great variety of infective organisms were identified and various chemotherapeutic drugs were also developed. In the modern Pharmacology Paul Ehrilich (1874-1915 AD), who was called "The father of modern Chemo-therapy" has demonstrated the efficacy of Methylene blue in the treatment of Malaria and introduced Arsephenamine, the first really effective chemo-therapeutic agent in the treatment of syphilis. Later on Chemo-therapeutic drugs like Sulfonamides and antibiotics like Penicillin, Streptomycin etc., were invented. Sushruta was the first medical scientist who has identified diseases namely Kustha (Leprosy including other skin diseases), Jwara (Fever due to Bacteria, virus and parasites) Shosha (T.B. and Netra-abhisyanda other immunodeficiency disorder) and (conjunctivitis) as Aupasargika roga (communicable diseases) and described the management with certain Herbs belonging to various groups namely Arkadi (Arka, Karnja, Rasna etc.), Surasadi (Tulasi,

Vidanga, Nirgundi etc.) and Lakshadi (Laksha, Kutaja, Nimba, Haridra, Daruharidra, Saptaparni etc.)¹.

Charaka in treatise described the following herbs under Krimighna dashemani,²

- 1. Akshiva Moringa oleifera Lam.
- 2. Maricha Piper nigrum Linn.
- 3. Gandira Euphorbia antiquorum Linn.
- 4. Kebuka Costus speciosus (Koen) Sm.
- 5. Vidang Embelia ribes Burm. F.
- 6. Nirgundi Vitex nigundo Linn.
- 7. Kinhi Achyranthes aspera Linn.
- 8. Svadanshtra Tribulus terrestris Linn.
- 9. Vrusha-parnika *Ipomoea biloba* Forsk.
- 10. Akhuparnika Ipomoea reniformis Chois

In view of certain side effects caused due to usage of modern antimicrobial drugs and antibiotics scientists have made some attempts to screen some of the Ayurvedic herbs, which possess broader spectrum of safety. In most of the microbial studies the Indian medicinal plants have exhibited anti-fungal, anti-bacterial and anti-viral properties

Researches carried out on some of the anti-microbial herbs are reviewed here under³:

SN	Latin name	Sanskrit name	Activity reported
1	Achyranthes aspera Linn.	Apamarga	Leprosy, particularly sub-acute and mild type
2	Acorus calamus Linn.	Vacha	M. tuberculosis
3	Alpinia galanga Willd.	kulanjana	M. tuberculosis and gram negative organisms
4	Araca catechu Linn.	Pooga	Staphylococcus and Escherichia coli
5	Azadirachta indica A. Juss	Nimba	M. tuberculosis, S. typhosa, S. paratyphi, Vibrio cholerae, Klebsiella pneumoniae and paramaecium
			caudatum
6	Berberis aristata DC.	Daruharidra	Vibrio cholerae (berberine)
7	Bryophyllum calycinum salisb.	Parnabija	Anti-bacterial activity, wide range of gram positive and gram negative bacteria (bryophyllin)
8	Cassia fistula Linn.	Aragvadha	S. aureus, S. albus, B. megatherium, S. flexneri, S.shigae, S. typhi para A and para B
9	Cassia occidentalis Linn.	Kasamarda	S. aureus, B. subtilis and V. cholera
10	Cucurbita maxima Duch. ex Lam	Peeta	M. tuberculosis
		kushmand	
11	Curcuma longa Linn.	Haridra	Gram-positive and gram-negative organisms
12	Cyperus rotundus Linn.	Mustaka	Staphylococcus aureus
13	Desmodium gangeticum DC	Shalaparni	S. aureus and B. subtilis
14	Emblica officinalis Gaertn.	Amalaki	M. pyogenes var. aureus, S. typhosa, S. paratyphi, albus, S. schottmulleri and S. dysenteriae
15	Hedychium spicatum Buch-Ham	Shati	Cl. Welchii, V. cholerae Ogawa, Strep. Faecalis, C. diphtheriae, Sh. Shigae, S. typhi, E. coli, Ps.
			Aeruginosa, Staph pyogenes and Staph aureus
16	Helianthus annuus Linn.	Adityabhakta	Staph. Aureus
17	Hemidesmus indicus (Linn) R. Br.	Sariva	Staph. Aureus, Staph. Albus, Sal. Typhosa, V. cholerae, Esch. Coli, Sh. Singae, Sh. Flexineri and Sh.
			Sonnei
18	Inula racemosa Hook. f.	Pushkaramoola	E. coli, Kl. Pneumoniae, Staph. Albus, Staph. Aureus, Ps. Aeruginosa, P. vulgaris, B. subtilis and C.
			pyogenes
19	Jasminum officinale Linn Forma	Jati	Staph. Aureus
	grandiflorum (linn.) Kobuski.		

K. Nishteswar et al. IRJP 2011, 2 (12), 1-3

20	Lawsonia inermis Linn.	Madayantika	M. pyogenes var. aureus, Strep. pyogenes, Dip. pneumoniae, B. subtilis, E. coli, Sal. typhosa, Vib. comma and Sh. dysenteriae
21	Leptadenia reticulata wight & Arn.	Jeevanti	M. pyogenes var. aureus, M. pyogenes var. albus, M. pyogenes var. citreus, B. megatherum, Strep. Pyogenes var. haemolyticus, S. typhosa, S. paratyphi, E. coli, S. schottmulleri, P. vulgaris and Ps. Pyocyanea
22	Leucas aspera (Willd.) Spreng.	Dronapushpi	E. coli, S. typhosa, Vib. Comma and Sh. Dysenteriae
23	Madhuca longifolia (koen) Macb.	Madhuka	B. anthracis, B. pumilus, B. subtilis, S. paratyphi, V. cholera, Xanth. Campestris and Xanth. Malvacearum
24	Mallotus philippinensis Muell. Arg.	Kampillaka	B. subtilis, Staph. Aureus
25	Melia azadirachta Linn.	Mahanimba	Staph. aureus, B. subtilis, E. coli and Xanth. Citri
26	Mentha spicata Linn. Emend Nathh	Pootiha	Staph. Aureus and E. coli
27	Mesua ferrea Linn.	Nagkeshar	Staph. Aureus, E. coli, V. cholera, Eberthella typhosa, B. friedlanderi and M. phlei B. subtilis, Sh. Dysenteriae, Strep. Pyogenes, S. typhosa, Sar. Lutea, Strep. Faecalis, B. pumilus and Ps. Solanacearum (oil)
28	Mimusops elengi Linn.	Bakula	B. anthracis, B. mycoides, B. pumilus, B. subtilis, S. paratyphi, Staph. albus, V. cholerae, Xanth. campestris, Xanth. malvacearum
29	Momordica charantia Linn.	Karvellaka	Sh. negatar, E. coli and Ps. aeruginosa
30	Moringa oleifera Lam.	Shigru	Staph. aureus, M. pyogenes var. aureus, B. subtilis, Dip. pneumoniae, Strep. pyogenes, E. coli, V. cholerae, Sh. Dysenteriae and S. typhosa
31	Murraya koenigii (Linn.) Spreng	Kaidarya	B. subtilis, Staph. aureus, C. pyogenes, P. vulgaris and pasteurella multicida
32	<i>Myristica fragrans</i> houtt.	Jatiphala	Staphylococcus, B. anthracis, B. pumilus, B. subtilis, B. mycoides, E. coli, Ps. magniferae indicae, Sar. lutea, S. typhosa, S. paratyphi, S. aureus, S. albus, V. cholerae, Shigella sp. 1 &2, Xanth. campestris
33	Nardostachys jatamansi DC	Jatamansi	Staph. aureus, E. coli, Strep. pyogenes, Sal. pullorum, Pasteurella multocida and Ps. aeruginosa
34	Nigella sativa Linn.	Kalajaji	Staph. aureus, E. coli, M. pyogenes var. aureus, B. subtilis, Strep. pyogenes B. anthracis, B. pumilus, B. subtilis, Sh. dysenteriae, S. paratyphi, S. typhi, E. coli, Sh. boydii, Sh. nigar, Sh. sonnie B. eereus, Staph. lutea, Ps. aeruginosa
35	Ocimum americanum Linn.	Sweta tulasi	Staph. aureus, E. coli, Strep. pyogenes, S. typhosa, Mycobacterium H37 RV
36	Ocimum basilicum Linn.	Barbari	B. typhosa, B. pumilus, Sh. negarata, Sar. lutea, P. vulgaris, and Kl.pneumoniae, B. subtilis, B. anthracs, S. paratyphi, Xanth. campestris
37	Ocimum sanctum Linn.	Tulasi	Staph. aureus, E. coli, M. tuberculosis, M. pyogenes var. aureus
38	Phyllanthus urinaria Linn.	Bhumyamalaki	E. coli, V. cholerae, E. coli, Sh. dysenteriae
39	Picrorhiza kurroa Royle ex. Benth	Katuki	Staph. aureus, E. coli, S. typhi
40	Piper betle Linn.	Tambula	<i>M. pyogenes var. aureus, Dip. pneumoniae, Strep. pyogenes, Vibrio cholerae, B. subtilis, Sh. dysenteriae, E. coli, S. typhosa, B. megatherum, Staph. aureus, Staph. albus, Sar. lutea, P. vulgaris, erwinia carotovora</i> and <i>Ps. solanacearum</i>
41	<i>Piper cubeba</i> Linn. f.	Kankola	B. subtilis, V. cholerae, C. diphtheriae, S. typhi, Strep. pyogenes, B. punilus, Ps. solanacearum, Strep. paecalis
42	Piper longum Linn.	Pippali	B. subtilis, B.cereus, M. tuberculosis, S. aureus, S. albus, Sar. lutea, B. shigella dysenteriae, E. coli, E. boydii, S. typhi, V. cholerae, Sh. Negarata, S. paratyphi (Oil)
43	Piper nigrum Linn.	Marich	E. coli, Aerobacter aerogenes, L. casei, Staph. faecalis, Staph. aureus, Sh. sonnei, S. albus, C. diphtheriae, Sh. dysenteriae, Sar. lutea, B. pumilus, Ps. pyogenes, Strep. pyogenes, Micrococcus sps and Ps. solanacearum, B. subtilis, Staph. aureus, S. typhosa, S. paratyphi and pestalotia sp.
44	Plumbago zeylanica Linn.	Chitraka	B. pumilus B. subtilis, B. mycoides, S. typhi, S. paratyphi, Sar. lutea, Staph. aureus, Xanth. Citri, Xanth. malvacearum, S. aureus, S. albus, S. paratyphi, Staph. Citreus, Sal. dubin and Klebsiella pneumonia
45	Pongamia pinnata (Linn.) Pierre	Karanja	B. anthracis, Ps. mangiferae, S. typhi, B. pumilus, B. mycoides, E. coli, Sar. lutea, Staph. aureus, staph. albus, Xanth. campestris, M. pyogenes var. aureus, M. pyogenes var. citreus, B. subtilis, C. diphtheria, S. typhosa, S. typhi para A and para B, E. coli and M. tuberculosis
46	Prunus amygdalus Batch.	Vatada	Staph. pyogenes, E. coli, B.proteus, Ps. pyocyaneus, Kl. aerogenes, Strep. pneumonia, strep. haemolyticus, Strep. viridians, Alkagenius faecales and Staph. albus
47	Psoralia corylifolia Linn.	Bakuchi	E. coli, Kl. aerogenes, staph. albus, S. aureus, B. subtilis, B. anthracis, Sal. pulloran, Sal. typhimurium, P. vulgaris and Klebsiella sps.
48	Punica granatum Linn.	Dadima	S. typhosa, S. paratyphi, Klebsiella pneumonia, Sh. Flexneri, B. anthracis, B. pumilus B. subtilis, S. paratyphi, V. cholerae, Xanth. campestris and Xanth. malvacearum

A critical review of Ayurvedic therapeutics clearly indicates that several infective conditions have been dealt in detail with herbal and herbo-mineral formulations. For many centuries, the tribal community had a traditionally self-managed system of folk medicine. This system has certain relevance to the great tradition of Ayurveda. Some selected herbs which are used by tribal and rural people for curing various infective diseases caused due to bacteria, virus and fungi have been reported to possess anti-microbial properties⁴.

- 1. Investigations were carried out to evaluate the therapeutic properties of the seeds and leaves of *Moringa oleifera* Lam as herbal medicines. Ethanol extracts showed anti-fungal activities in vitro against dermatophytes such as *Trichophyton rubrum*, *Trichophyton mentagrophytes*, *Epidermophyton Xoccosum*, and *Microsporum canis*⁵.
- 2. Seed powder of *Caesalpinia crista*⁶, stem bark and seeds of *Holarrhena anti-dysentrica*⁷ and root powder of *Asparagus racemosa* have shown significant amoebicidal property.
- 3. The herbs namely *Alstonia scholaris*, *Caesalpinia crista*, *Picrorrhiza kurroa* and *Swertia chirata* in combination found to be very effective in treating malaria including *P.falciparum* infection⁸.
- 4. Acorus calamus, Alpinia galanga and Cucurbita maxima have shown anti-tubercular property⁹,
- 5. *Berberis aristata* found to be very useful in the management of cholera¹⁰,
- 6. *Ocimum sanctum* and *Curcuma longa* are found to have antiviral and anti-bacterial property.
- 7. The drug namely *Phyllanthus niruri* and *Picrorrhiza kurroa* have shown anti-viral action against hepatitis 'B' virus.

- 8. The herbs *Centella asiatica* and *Hydnocarpus* have profound anti-leprotic action¹¹.
- 9. The methanol leaf extracts of Acacia nilotica, Sida cordifolia, Tinospora cordifolia, Withania somnifera and Ziziphus mauritiana showed significant antibacterial activity against Bacillus subtilis, Escherichia coli, Pseudomonas fluorescens, Staphylococcus aureus and Xanthomonas axonopodis pv. malvacearum and antifungal activity against Aspergillus flavus, Dreschlera turcica and Fusarium verticillioides when compare to root/ bark extracts. A. nilotica and S. cordifolia leaf extract showed highest antibacterial activity against B. subtilis and Z. mauritiana, leaf extract showed significant activity against X. a. pv. Malvacearum and root and leaf extract of S. cordifolia recorded significant activity against all the test bacteria. A. nilotica bark and leaf extract showed significant antifungal activity against A. flavus. Ziziphus mauritiana and Tinospora cordifolia recorded significant antifungal activity against D. turcica. The methanol extract of Sida cordifolia exhibited significant antifungal activity against F. verticillioides¹²
- 10. Many essential oils are included in pharmacopoeias which are having antimicrobial activity, including: Oregano oil, Tea tree oil in cosmetics, medicine, Mint oil in medicine, cosmetics (tooth paste etc.) Sandalwood oil in cosmetics, Clove oil stomatology etc. *Nigella sativa* (Black cumin) oil, Onion oil (*Allium cepa*) phytoncides, in phytotherapy, Leleshwa oil Lavender oil, Lemon oil, myrtle oil, Neem oil Garlic, Eucalyptus oil, Peppermint oil, Cinnamon oil and Thyme oil¹³
- 11. Significant antimicrobial action was observed in the leaves, stem bark and fruit pulp of Cassia fistula and anti-fungal activity in the bark of the stem and root. Crude methanol extracts from leaves of Cassia alata, Cassia fistula and Cassia tora were investigated for their antifungal activities on three pathogenic fungi (Microsporum gypseum, Trichophyton rubrum and Penicillium marneffei). Among 3 species, C. alata (Brihat Chakramarda) was the most effective leaf extract against T. rubrum and M. gypseum with the 50% inhibition concentration (IC50) of hyphal growth at 0.5 and 0.8 mg/ml, respectively, whereas the extract of C. fistula was the most potent inhibitor of P. marneffei with the IC50 of 0.9 mg/ml. In addition, it was found that all three Cassia leaf extracts also affected M. gypseum conidial germination. Microscopic observation revealed that the treated hyphae and macroconidia with leaf extracts were shrunken and collapsed, which might be due to cell fluid leakage¹⁴.
- **12.** "Antifungal activities of the alcoholic extract of coconut shell— *Cocas nucifera* is also reported.

CONCLUSION

The review so far made clearly indicate that the herbs are the rich source of potent anti-infective drug molecules and they produce a host of bio-active molecules, most of which probably evolved as chemical defenses against infections. The indigenous herbs namely Nimba (Azadirachta indica), Haridra (Curcuma longa), Daruharidra (Berberis aristata), Tulsi (Ocimum sanctum) and Karanja (Pongamia pinnata) have been included in various classical formulations meant for the management of different bacterial, viral and parasitic infections. The herbs namely Alostonia scholaris, Caesalpinia crista, Picrorrhiza kurroa and Swertia chirata in combination found to be very effective in treating malaria including *P.falciparum* infection. For many centuries, the tribal community had a traditionally self-managed system of folk medicine. This system has certain relevance to the great tradition of Ayurveda. Cissampelos pareira (Patha), Andrographis panniculata (Kiratathika). Nyctanthes arbortristis (Parijata). Soymida febrifuga (mamsarohini), Terminalia tomentosa (Asana), Tinospora cordifolia (guduchi), Mimosa pudica (Lajjalu), Aerva lanata (Gorakshagajja), Malaxis rheedii, Aganosma caryophyllata are being used by tribals in the management of fevers due virus, bacteria and parasites. REFERENCES

- Yadavaji Trikamji Acharya. Sushruta Samhita.1st ed.Mumbai: Nirnaya Sagar Press;1942.
- Yadavaji Trikamji Acharya. Charaka Samhita.1st ed. Mumbai: Nirnaya Sagar Press;1941.
- Gupta AK, Tandon N.Reviews on Indian Medicinal Plants .1st ed. New Delhi: Indian Council of Medical Research;2004
- T. Pullaiah. Medicinal Plants in India. 1st ed. New Delhi: Regency Publications;2002.
- Ping-Hsien Chuang and Chi-Wei Lee. Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam.Bioresource Technology. 2007; 98: 232– 236
- S. Shameel, K. Usmanghani, M.S. Ali and Viqar Uddin Ahmad. Caesalpinia bonduc Seed Oil : Lipid Composition Assessment. Pak. J. Pharm. Sci.1997; 10(1), 29
- 7. Brown H C. Holarrhena antidysentrica. Br Med J.1992; 306: 903-10
- M Gandhi, VK Vinayak. Preliminary evaluation of extracts of Alstonia scholaris bark for in vivo antimalarial act. J Ethnopharmacol. 1990; 29: 51-7.
- Raju Gautam, Arvind Saklani and Sanjay M. Jachak. Indian medicinal plants as a source of antimycobacterial agents. Journal of Ethnopharmacology.2007;110: 200-234.
- M. Shahid, T. Rahim, A. Shahzad, Tajuddin, A. Latif, T. Fatma et al. Ethnobotanical studies on Berberis aristata DC. Root extracts. African Journal of Biotechnology. 2009;8: 556-63.
- Nishteswar K. Ayurvedic Herbal Remedies.1st ed. Varanasi: Chaukhambha Sarashvati Prakashan; 2009.
- B. Mahesh and S. Satish. Antimicrobial Activity of Some Important Medicinal Plant against Plant and Human Pathogens.World Journal of Agricultural Sciences.2008; 4: 839-843,
- Seenivasan Prabuseenivasan, Manickkam Jayakumar, and Savarimuthu Ignacimuthu. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med.2006; 6: 39.
- Palanichamy S. and Nagarajan S.Antifungal activity of *Cassia alata* leaf extract. J. Ethnopharmacol.1990;29: 337-340.
- 15. Hemadri Koppula. A treatise on Tribal Medicine.Vijayawada: Dr Koppula Hemadri's House of Tribal Medicine;2006