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ABSTRACT 
 
Hydroxylation of tabersonine by tabersonine 16-hydroxylase is a rate limiting step in the biosynthesis of terpenoid indole alkaloids (TIAs) in 
Catharanthus roseus. Total RNA was isolated from C. roseus leaves using three different methods of which isolation with TRIzol® gave the best result. 
Phusion high-fidelity DNA polymerase amplified t16h gene from C. roseus cDNA while Taq polymerase failed due to high A-T content of t16h gene 
which needs proofreading DNA polymerase to increase the amplification efficacy. 
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INTRODUCTION 
 
Catharanthus roseus was found to produce more than 130 
monoterpenoid indole alkaloid that have several medical 
properties1-4. The most important anti-tumor agents, vincristine 
and vinblastine, are produced in its leaves. Low anticancer 
alkaloid contents in C. roseus has encouraged the intense research 
for alternative methods for production such as cell cultures, 
metabolic engineering5,6 semi-synthesis7,8, or even the total 
chemical synthesis9-13. Total synthesis was found to be difficult 
due to the structural complexity of the molecules and also the 
complicated reaction steps that involves the stereochemical 
reactions. Various semi- synthetic procedures were developed for 
these alkaloids on the basis of their chemical7 or enzymatic8 
coupling of the commercially available catharanthine and 
vindoline.  
 
Tabersonine is transformed into vindoline by a sequence of seven 
steps, the first step of which is aromatic hydroxylation, catalysed 
by tabersonine 16-hydroxylase (T16H) yielding 16-
hydroxytabersonine14,15 (figure 1). The activity of T16H was first 
detected in total protein extracts from young leaves of C. roseus, 
and it was induced by light16. 
 
T16H enzyme was shown to be localized in the endoplasmic 
reticulum16. Also, it was confirmed that the activity of T16H is 
located in the epidermal cells of the leaves, identifying these cells 
as the major site of vindoline biosynthesis17. Study conducted on 
50 different cultivars of C. roseus showed that only one cultivar 
accumulated 10 times less vindoline compared to the others and 
enzymatic studies demonstrated that this low accumulating 
vindoline cultivar has 10 times lower T16H activity compared to 
the others18. The aim of this study is to PCR-amplify t16h from 
the young leaves of C. roseus. 
 

MATERIALS AND METHODS 
 
Hettich Mikro 220R centrifuge (Tuttlingen, Germany) was used 
for centrifugation under cooling. SDE-PLAS horizontal 
electrophoresis unit connected to Consort E865 electrophoresis 
power supply (Turnhout, Belgium) and a Syngene UV 
transilluminator (Cambridge, UK) was used for running and 
visualisation of agarose gels. PCR reactions were done using a 
FTC4/F02 thermal cycler (Staffordshire, UK). Phusion high-
fidelity DNA polymerase kit was purchased from New England 
Biolabs (Ipswich, Massachusetts, USA). Trizol® reagent and 
dream Taq master mix were purchased from Thermo Fisher 
Scientific (Waltham, Massachusetts, USA). RNAsimple total 
RNA kit and FastQuant RT kit were purchased from Tiangen 
(Sichuan, China). HyperLadderTM 1kb was purchased from 
Bioline (London, UK).  
 
Total RNA isolation 
   
Young leaves of C. roseus (collected from Genetic Engineering 
and Biotechnology Research Institute, Sadat City University, 
Sadat city, Egypt, August 2017) were grinded using liquid 
nitrogen to isolate total RNA using three different methods. The 
first method (chemical method) followed the previously 
published RNA isolation protocol which depends on using 
guanidine thiocyanate in sample homogenization19. The second 
method is by using RNAsimple total RNA kit following the 
manufacturer’s manual while in the third method TRIzol® reagent 
was used according to the manufacturer’s protocol. 
 
Amplification of t16h-cDNA 
 
FastQuant RT kit was used to synthesize first strand cDNA from 
TRIzol® isolated RNA according to the manufacturer’s manual. 
The 1305 bp fragment of t16h gene was amplified using phusion 
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high-fidelity DNA polymerase under the following conditions: 98 
°C for 30 sec, followed by 35 cycles of: 98 °C for 12 sec, 57 °C 
for 30 sec, 72 °C for 45 sec, then hold at 72 °C for 7 min using 5ʹ-
ATGCACTTAAAAATTGGTGAAG-3ʹ as a forward primer (F1) 
and 5ʹ-TCAAGCAGGAGAAGAGGAA- 3ʹ as a reverse primer 
(R1). Oligo Calc tool (oligonucleotide properties calculator) was 
used to calculate the annealing temperatures of the designed 
primers and check for primer self-dimerization and potential 
hairpin formation. Guanine-12 was replaced by adenine in the 
forward primer to decrease primer dimer formation, they encode 
the same amino acid Lys-4.  New primers that contain G-C rich 
restriction sites were used in the amplification to study the effect 

of increasing G-C content of primers in the efficacy of 
amplification. The 1328 bp fragment for t16h with G-C rich 
restriction sites was amplified by phusion high-fidelity DNA 
polymerase using the primers (5ʹ-CGCGCCATGGAGA 
TGCACTTAAAAATTGGTGAAG-3ʹ, forward F2) and (5ʹ- 
TATGCGGCCGCTCAAGCAGGAGAAGAGGAA -3ʹ, reverse 
R2) that contain restriction sites for Nco1 and Not1 at the forward 
and reverse ends of the open reading frame, respectively. Trials 
for amplification of t16h gene using Taq DNA polymerase were 
also performed.  
 

 

 
 

Figure 1: Biosynthesis of vindoline from tabersonine in C. roseus. (OMT) O-methyl transferase; (T3O) tabersonine 3-oxygenase; (T3R) 
tabersonine 3-reductase; (NMT) N-methyl transferase, (D4H) desacetoxyvindoline-4-hydroxylase; (DAT) deacetylvindoline-4-O-

acetyltransferase 
 

 
 

Figure 2: Agarose gel electrophoresis of the isolated total RNA in triplicate. (A) using chemical method; (B) using RNAsimple total RNA kit; 
(C) using TRIzol® 
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Figure 3: Agarose gel electrophoresis showed amplified t16h. (A) using F1 and R1 primers; (B) using F2 and R2 primers. * refers to 
HyperLadderTM 1kb. 

 
RESULTS AND DISCUSSION 
 
Total RNA isolation  
 
Total RNA isolated using chemical method, RNAsimple total 
RNA kit and TRIzol® was analyzed by agarose gel 
electrophoresis to determine which method gave the highest 
quality and quantity (figure 2). The result indicated that extraction 
with TRIzol® is the best method for total RNA isolation from 
plant tissue20. It produced high quality and quantity of  total RNA 
(figure 2, panel C) in a single step that maintains the integrity of 
the isolated total RNA20. Extraction with chemical method 
resulted in low yield (figure 2, panel A), while extraction with 
RNAsimple total RNA kit produced low quality RNA (figure 2, 
panel B).  
 
PCR amplification 
 
Phusion high fidelity DNA polymerase succeeded to amplify the 
A-T rich t16h gene (Caros001600.1, A-T content of t16h = 
65.1%) while Taq DNA polymerase failed (figure 3). It is well 
known that the efficacy of G-C rich21,22 or A-T rich23 fragment 
amplification increased by using DNA polymerase with 3'-
exonuclease activity and using an enhancing agent like DMSO 
and betaine24-26. Accordingly, the 1305 bp band of t16h gene 
appeared on agarose gel electrophoresis after using phusion high-
fidelity DNA polymerase kit which contains DMSO (figure 3, 
panel A). The obtained band is consistent with the length of t16h 
published sequence. Taq DNA polymerase failed in the 
amplification trails as it does not have 3'-exonuclease activity. 
Increasing G-C content of the used primers may also increase the 
amplification efficacy27. Slightly higher concentration of t16h 
was achieved using primers that were designed to include 
restriction sites for Nco1 and Not1 at the forward and reverse ends 
of the open reading frame (1328 bp), respectively (figure 3, panel 
B).  
 

CONCLUSION  
 
Phusion high-fidelity DNA polymerase amplified the A-T rich 
t16h gene from C. roseus cDNA. Adding G-C rich restriction sites 
to the designed primers increased the amplification efficacy.  
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