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ABSTRACT 
Major depressive disorder is a heritable neuropsychiatric syndrome characterized by relatively subtle cellular and molecular alterations localized to a complex network of neural 
substrates. Various forms of psychotherapy, pharmacotherapy, and electroconvulsive therapy (ECT) are currently the most commonly used antidepressant treatments. Despite 
adequate care with currently available treatments, up to 70% of depressed patients have residual symptoms, and, even with more aggressive therapies, 20% or more may show 
only a limited response. The need for newer compounds to treat depression is still an ever growing concern due to the enormous societal and famifications of depression. This 
review covers all the monoaminergic (SSRI/5-HT1A antagonists, SSRI/5-HT2C antagonists, SSRI/alpha-2 adrenergic antagonists, triple reuptake inhibitors, dopamine agonists, 
targeting GABA) and beyond monoaminergic strategies including corticotropin-releasing factor (CRF)-1 receptor antagonists, Inhibition of glucocorticoid function, substance P 
(Nk-1) antagonists, MCH1 receptor antagonists, Gal3 receptor antagonists, arginine vasopressin as the potential novel targets for depression.. However, To be the most 
successful novel target it shouldn’t  only demonstrate preclinical antidepressant like effects, but also target the unmet clinical needs and lead to long-term disease modification.  
KEY WORDS: Depression, Antidepressant, GABA, Monoamine, Molecular target, Corticotropin-releasing factor 
 
INTRODUCTION 
Depression is one of the top ten causes of morbidity and mortality, 
afflicting up to 20% of the world's population1,2. In addition to its 
social toll, the economic burden of depression contributes 
approximately $44 billion in lost productivity annually in the United 
States3. The symptoms of depression are chronic, recurring, and life 
threatening2. Despite adequate care with currently available 
treatments, up to 70% of depressed patients have residual symptoms, 
and, even with more aggressive therapies, 20% or more may show 
only a limited response4,5. Rather than being the exception, recurrent 
episodes are the rule, and there are few evidence-based approaches 
to help clinicians maintain a patient’s antidepressant response. 
Persistent depression is associated with an increase in substance and 
alcohol abuse, an increased risk for suicide and for cardiovascular 
disease. Thus, improved treatments for depression are urgently 
needed6. 
Current Antidepressant Treatments 
Despite the relative lack of knowledge of the aetiology and 
pathophysiology of depression, there are good treatments for it, with 
most patients showing significant improvement with optimal 
treatment. Mild depression responds to different forms of 
psychotherapy. Mild and more severe forms of depression respond 
to a host of antidepressant medications, with a combination of 
medication and psychotherapy providing optimal treatment. 
Electroconvulsive therapy (shock treatment) is one of most effective 
treatments for depression, but is usually reserved for the more 
severely ill due to the availability of numerous pharmacotherapies. 
The utility of other so-called somatic therapies is under 
investigation. Almost all of the available medications for depression 
are based on chance discoveries that were made more than half a 
century ago. Most of today’s medications are based on the tricyclic 
antidepressants, which are believed to act by inhibiting the plasma 
membrane transporters for serotonin and/or noradrenaline7,8. Current 
pharmacological antidepressant treatments improve depressive 
symptoms through complex mechanisms that are themselves 
incompletely understood9. The need for newer compounds to treat 
depression is an ever growing concern due to the enormous societal 
and famifications of depression10. These older medications provided 
a template for the development of newer classes of antidepressant, 
including the SSRIs (selective serotonin reuptake inhibitors), NRIs 

(noradrenaline reuptake inhibitors) and SNRIs (serotonin and 
noradrenaline reuptake inhibitors). However, as these newer 
medications have the same mechanism of action as the older 
tricyclics, their intrinsic efficacy and range of patients for whom 
treatment is successful remain the same. The older monoamine 
oxidase inhibitors, which reduce the enzymatic breakdown of 
serotonin and noradrenaline, are also still used today with great 
success. Although today’s treatments for depression are generally 
safe and effective, they are far from ideal. Therefore there is still a 
great need for faster acting, safer and more effective treatments for 
depression11. 
The Search For Novel Antidepressants 
Various forms of psychotherapy, pharmacotherapy, and 
electroconvulsive therapy (ECT) are currently the most commonly 
used antidepressant treatments. Serendipitous discoveries and/or a 
limited understanding of the neurobiology of depression which 
largely focused on the monoaminergic neurotransmitter systems led 
to the development of many of these treatments. As knowledge of 
the neuroscience of depression advances, a number of novel targets 
for antidepressant treatment are being uncovered and actively 
investigated. Generally, these treatments fall into three major 
categories: first, medications that optimize the modulation of 
monoaminergic neurotransmitters; second, medications that target 
monoamine neurotransmitter and neuromodulatory systems; and 
third, devices that produce focal electrical brain stimulation targeting 
brain regions implicated in the pathophysiology of depression6. In 
this review, we discuss these treatments and highlight those that hold 
the most promise. 
Monoaminergic Strategies 
The monoamine hypothesis of depression postulates that the 
etiology and pathogenesis of depression arises from central 
deficiencies in serotonin, norepinephrine, and/or dopamine. 
Correspondingly, current pharmacotherapies have been developed in 
an effort to amend these alterations in monoaminergic systems (e.g., 
SSRIs, SNRIs). Regardless of their mechanism of action, however, a 
drawback of all marketed antidepressants is the 3- to 5-week delay 
necessary to achieve therapeutic efficacy. This lag time is thought to 
reflect the time required for desensitization of the receptors 
regulating monoamine release (e.g., 5-HT1A, 5-HT2C, and 5-HT1A 
and α2 adrenergic receptors). To potentially accelerate the onset of 
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antidepressant action as well as limit unwanted side effects  current 
drug development strategies are focusing on designing new 
antidepressants with dual and/or triple modes of action. These 
approaches, along with examples of preclinical and clinical studies, 
will be highlighted in the following sections.  
SSRI/5-HT1A antagonists 
The delayed clinical efficacy of SSRIs is believed to result, to a 
large extent, from the indirect activation of somatodendritic 5-HT1A 
autoreceptors. A profound body of preclinical literature indicates 
that acute SSRI treatment increases serotonin levels in various brain 
regions including the dorsal raphe nuclei. This elevation in serotonin 
engages inhibitory 5-HT1A autoreceptors residing in the dorsal raphe 
to inhibit 5-HT cell firing and dampen subsequent 5-HT release in 
terminal serotonergic brain regions12. However, following long-term 
SSRI treatment (14–21 d) 5-HT1A autoreceptors desensitize resulting 
in more pronounced elevations in serotonin levels compared to acute 
treatment13,14. These data suggest that a strategy combining SSRIs 
with 5-HT1A receptor antagonists would produce robust and more 
rapid increases in central serotonin levels and likely yield an 
antidepressant with an accelerated onset of activity. This 
neurochemical hypothesis is supported by a plethora of 
microdialysis studies demonstrating that pretreatment with selective 
5-HT1A antagonists such as WAY-100635 augments SSRI- and 
SNRI-induced changes in cortical serotonin levels15. 
Preclinical models sensitive to the behavioral effects of 
serotonergics corroborate these findings as 5-HT1A antagonism is 
reported to potentiate the antidepressant-like effects of SSRIs in the 
rodent resident-intruder, social interaction, and schedule-induced 
polydipsia assays16-18. Clinical data using this combination strategy 
demonstrate that the antidepressant activity of SSRIs is accelerated 
and/or enhanced when combined with the mixed 5-HT1A/alpha 
adrenoceptor antagonist, pindolol19. As some of these dual acting 
SSRI/5-HT1A compounds begin their clinical evaluation, it may only 
be a matter of time to determine whether this approach will represent 
the newest generation of antidepressants. 
SSRI/5-HT2C antagonists 
Desensitization of 5-HT2C receptors is routinely reported following 
chronic SSRI treatment. However, the overall contribution of this 
molecular change to the antidepressant effects of SSRIs is not well 
understood. Recent data suggest that 5-HT2C receptor inactivation 
may play a role in augmenting the neurochemical and behavioral 
effects of antidepressants. Using in vivo microdialysis techniques in 
rats, Cremers et al. and others showed that the selective 5-HT2C 
antagonists, SB 242084 and RS102221, and the nonselective 5-HT2C 
receptor antagonists, ketanserin and irindalone, potentiate the 
neurochemical effects of SSRIs on hippocampal and cortical 
serotonin levels20,21. Despite the robust neurochemical effects when 
these agents are combined, 5-HT2C receptor antagonism alone has no 
significant effects on extracellular serotonin21,22. Similar to the 
reported neurochemical effects, this serotonergic combination 
produces marked augmentation of the antidepressant-like effects of 
SSRIs in behavioral models of depression and anxiety including the 
mouse tail suspension test (TST) and schedule-induced polydipsia 
assay20,22. Complementary studies done in 5-HT2C receptor null 
mutant mice show enhanced neurochemical and behavioral (TST) 
responses to fluoxetine compared to their wild-type littermates22. 
Overall, these preclinical data show that 5-HT2C antagonism 
augments the neurochemical and behavioral effects of SSRIs. 
Moreover, these data highlight a novel strategy of combining both 
targets, either in a single molecular entity or as adjunctive therapy to 
already marketed SSRIs, for the potential treatment of depressive 
disorders. 
SSRI/alpha-2 adrenergic antagonists 
The success of SNRIs in the clinic underscores the importance of 
elevating both norepinephrine and serotonin in the treatment of 

depression. However, a strategy that targets noradrenergic 
autoreceptors may have merit in augmenting the neurochemical 
effects of conventional antidepressants. Several classes of 
antidepressants, particularly norepinephrine reuptake inhibitors such 
as reboxetine (Edronax) and the SNRIs, acutely elevate extracellular 
levels of norepinephrine. The release of norepinephrine can activate 
presynaptic alpha-2 adrenergic autoreceptors located on both 
norepinephrine and dopamine cells causing blunted noradrenergic 
and dopaminergic responses, respectively. Thus, antidepressants, 
when given in combination with agents that “turn off ” alpha-2 
autoreceptors, can potentially elevate levels of all three 
monoamines. Neurochemical validation of this hypothesis comes 
from microdialysis studies showing that alpha-2 adrenergic 
antagonists markedly potentiate the ability of antidepressants to 
increase extracellular levels of norepinephrine, serotonin, and 
dopamine, depending on the brain region examined23. Although 
there are essentially no published data showing that this particular 
combination strategy is efficacious in preclinical behavioral models 
of depression, the data from microdialysis studies suggest that alpha-
2 adrenergic antagonism may strengthen the neurochemical effects 
of antidepressants, and may improve the efficacy of antidepressants 
in humans24. In addition, nonselective alpha-2 adrenergic receptors 
antagonists such as mirtazapine (Remeron) are reported to possess 
modest antidepressant activity in their own right25. Finally, clinical 
studies emphasize that combining SSRIs with nonselective alpha-2 
receptor antagonists actually shortens the time required to achieve 
antidepressant activity26,27. 
Collectively, these data have ignited considerable chemistry efforts 
to design and synthesize novel antidepressant molecules that 
combine monoamine reuptake inhibition with alpha-2 adrenergic 
receptor antagonism28,29. 
Triple Reuptake Inhibitors 
Triple reuptake inhibitors block synaptic reuptake of 5- HT, NE, and 
DA. Animal studies have demonstrated antidepressant-like effects 
for several of these compounds30-35. DOV 216 303, one such agent, 
was found to be safe and tolerable during short-term use in a Phase 
1, open-label study35. Tesofensine (NS 2330), another compound, 
has shown modest preliminary safety and efficacy in treating the 
motor symptoms of Parkinson’s Disease (PD)36, but clinical data in 
treating depression are unavailable. The success, however, of these 
compounds as well as the strategy and benefit of combing inhibition 
of all three monoamines into a single molecule  is still awaiting 
evaluation in human patients. 
Additional Multitarget, Monoamine Strategies 
Both transporter and inhibitory autoreceptor mechanisms strictly 
control the release of biogenic amines into the extracellular 
environment. For instance, 5 HT1A and 5-HT1B receptors are 
somatodendritic and terminal autoreceptors, respectively, regulating 
levels of central serotonin levels. Blockade of 5-HT1B receptors 
alone has been shown to acutely increase levels of serotonin in the 
guinea pig frontal cortex and hippocampus as well as augment the 
effects of SSRIs on serotonin levels37. Combining the selective 5-
HT1A antagonist, WAY-100635, with the 5-HT1B receptor 
antagonist, SB-224289, produced marked elevations in serotonin 
levels in the guinea pig38. These results curiously suggest that 
combining 5-HT1A and 5-HT1B receptor antagonism can elevate 
serotonin and, consequently, potentially be an effective strategy to 
treat depression. Additional examples of targeting multiple 
postsynaptic receptors as putative antidepressant agents include the 
5-HT1A agonist/alpha-2 antagonist, sunepitron, the 5-HT1A 
agonist/dopamine D2 agonist, roxindole, and alpha-2 adrenergic 
antagonist/5-HT2 antagonist, mirtazapine39. In summary, these 
strategies seem to efficiently “tweak” the monoaminergic systems in 
the hopes of developing a more rapid acting antidepressant. 
However, much needed clinical data regarding the efficacy, safety, 
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and tolerability of such “dual-acting” compounds is eagerly awaited. 
Perhaps newer approaches targeting convergent, downstream 
components of the monoamine system (e.g., neurotrophins) and/or 
nonmonoaminergic systems including GABA and glutamate may 
ultimately prove beneficial in the clinical management of 
depression. 
Dopamine agonists 
Dopamine D2/D3 receptor agonists include pramipexole and 
ropinirole. Two placebo-controlled trials have confirmed that 
pramipexole is efficacious, safe, and tolerable in patients with 
bipolar depression40,41. Pramipexole may also be effective in 
treatment-resistant unipolar depression as demonstrated in an open-
label study with long-term follow-up42,43. Ropinirole may have 
similar benefits in depression based on results from an open-label 
study44. 
Targeting Excitatory Amino Acids 
The NMDA receptor is an ionotropic glutamate receptor with 
highest densities located in cortico-limbic regions of the brain. 
Extracellular glutamate concentrations are enhanced by various 
stressors, like tail pinch and restraint, and an involvement of the 
NMDA receptor became apparent in the modulation of stress-
induced glutamate responses45, 46. Furthermore, chronic 
antidepressant administration can influence NMDA receptor 
function and receptor binding profiles, as well as generate regional 
alterations in mRNA expression that encodes multiple NMDA 
receptor subunits47,48. An extensive library of noncompetitive 
NMDA antagonists (e.g., MK-801, memantine, ketamine) that 
reduce glutamatergic transmission at the NMDA receptor have 
demonstrated antidepressant-like effects in animal models, including 
forced swim and tail suspension tests, inescapable stressors, and in 
learned helplessness49,50. 
With this in mind, the direction of major research efforts for the 
treatment of depression and affective disorders now encompasses 
the development of compounds that regulate the target-rich 
environment within the NMDA receptor complex. 
Targeting GABA 
GABA is the primary inhibitory neurotransmitter in the CNS. 
GABA has been implicated in a number of psychiatric disorders 
including schizophrenia and affective disorders. A number of studies 
have been carried out to assess the concentration of GABA in CSF 
or plasma in patients suffering from psychiatric disorders. The most 
consistent results are from studies in depressed patients. 
A number of research groups have reported CSF levels of GABA to 
be significantly decreased in depressed patients51-53. Furthermore, 
studies of plasma levels of GABA in depressed patients concur with 
these findings54. Using proton magnetic resonance spectroscopy, 
Sanacora and colleagues have measured cortical GABA 
concentrations in vivo. Occipital cortex GABA concentrations in 
depressed patients were found to be significantly lower than in 
healthy controls55. Subsequent studies demonstrated that these low 
levels of GABA were normalized after SSRI treatment. 
Interestingly, low levels of GABA in plasma of depressed patients 
were not reversed by desipramine treatment56. The decreases in 
GABA observed in depressed patients do not appear to be associated 
with changes in GABA uptake binding sites. Neither GABA B 
receptors nor glutamic acid decarboxylase (GAD; biosynthetic 
enzyme for GABA) activity have been found to be altered in 
depressed suicide victims, whereas GABA A receptor binding in 
frontal cortex was increased in depressed suicide victims57,58. The 
putative role of GABA, GABA A, and GABA B receptors in 
depression could be mediated directly by GABA or via other 
neurotransmitter systems. There are pieces of evidence linking 
GABA B receptors to noradrenergic and serotonergic systems. For 
example, administration of GABA B receptor antagonists has also 
been demonstrated to cause downregulation of beta adrenoceptors, 

an effect common to chronic administration of a number of types of 
antidepressants59,60. The GABA B antagonist, phaclofen, as well as 
the GABA A receptor antagonist, bicuculline, increased 
norepinephrine release in the median preoptic nucleus in vivo. 
Conversely, locally applied agonists of GABA A and GABA B 
receptors (muscimol and baclofen, respectively) decreased dialysate 
levels of norepinephrine in the same area. These data indicate that 
GABA A and GABA B receptors are involved in the control of 
norepinephrine release in this part of the rat brain61. Local infusion 
of the GABA A receptor antagonist, bicuculline, increases serotonin 
release in the dorsal raphe, indicating that GABA afferents exert a 
tonic inhibitory influence on serotonin neurones in the dorsal 
raphe62. In terms of behavioral effects of GABAergic drugs, the 
profile of the GABA B antagonist, CGP56433 in the forced swim 
test indicates a serotoninmediated effect; CGP56433 decreases 
immobility and increases swimming, a profile comparable with 
fluoxetine63. 
Thus, GABA is strongly implicated in depression such that GABA 
receptors are potential targets for the development of novel 
antidepressants 
Novel Pharmacological Targets: Beyond Monoamines 
In the area of depression research, interest in central peptide systems 
has focused on the high-profile efforts targeting receptors of the 
central substance P [neurokinin 1 (NK1)] and corticotropin-releasing 
factor (CRF1) systems. This has led to the development of numerous 
compounds now in clinical trials for depression. In addition to NK1 
and CRF1, however, interest has also fallen on receptors involved in 
mediating the effects of other central peptidergic systems. These 
include examples such as melanin-concentrating hormone (MCH) 
and arginine vasopressin. 
Corticotropin-releasing factor (CRF)-1 receptor antagonists 
Increased activity of the hypothalamic–pituitary–adrenal (HPA) axis 
is a major component of the mammalian endocrine stress response. 
Following a stressful encounter, the neuropeptide CRF is secreted 
into the hypothalamohypophysial portal circulation where it acts to 
stimulate the release of adrenocorticotropin (ACTH) from the 
anterior pituitary. ACTH stimulates glucocorticoid production and 
release from the adrenal cortex. Stress (physical or emotional) can 
precipitate or worsen depression in vulnerable individuals. A 
burgeoning database links HPA axis activity and more specifically 
CRF to this process. Compared to nondepressed controls, depressed 
or depressed suicidal patients show increased HPA axis activity and 
elevated cerebrospinal fluid (CSF) CRF concentrations, increased 
paraventricular nucleus (PVN) CRF mRNA expression, and a larger 
number of CRF-expressing neurons in the PVN64. In healthy 
volunteers, desipramine reduces CSFCRF concentrations65, and in 
depressed patients fluoxetine and ECT have shown similar effects66. 
These data suggest that antidepressant treatments with different 
mechanisms of action may ultimately reduce CRF activity as part of 
their mechanism of action. Consequently, research is focusing 
closely on the antidepressant potential of direct modulation of CRF 
neurotransmission. 
Two main CRF receptor subtypes, CRF1 and CRF2, exist in the 
central nervous system (CNS). CRF binds more avidly to CRF1 
receptors than to CRF2 receptors; urocortin is the preferred 
endogenous ligand for CRF2 receptors. Heightened anxiety-like 
behaviors in animals have been connected to the decreased activity 
of CRF2 receptors. Several CRF1 receptor antagonists possess 
anxiolytic-like and antidepressant-like effects in animal models67. 
R121919 showed encouraging antidepressant effects in humans but 
its development was discontinued as a result of potential liver 
toxicity68. CP-316 311, another CRF1 receptor antagonist, did not 
show significant antidepressant effects in a placebo-controlled and 
sertraline-controlled trial 69; however, it is unclear whether the dose 
tested was sufficient to block CNS CRF1 receptors effectively. NBI- 
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34041, a third agent, has not yet been tested in depressed patients 
but in healthy humans has shown an ability to attenuate the 
endocrine stress response70.  
Inhibition of Glucocorticoid Function 
Decreased synthesis or receptor blockade of adrenal glucocorticoids 
may have antidepressant effects. Ketaconozale, aminogluthemide, 
and metyrapone are agents that interfere with cortisol synthesis. All 
of these have shown some antidepressant potential, but adverse 
events have limited their development71. Mifepristone, also known 
as RU486, is a glucocorticoid 2 receptor antagonist that showed 
antidepressant efficacy in an early case series of patients with 
severe, chronic depression72. Two additional studies in patients with 
severe, psychotic depression (one open-label and one placebo-
controlled) both found mifepristone to be safe and efficacious, with 
therapeutic effects seen within one week73,74. Because these benefits 
were primarily in psychotic symptoms and not in depressive 
symptoms, this agent may be more appropriate for treating psychotic 
depression. 
Substance P (Nk-1) Antagonists 
Neurokinins are neuropeptides involved in nociception and many 
other physiologic processes. Neurokinin receptors are extensively 
distributed in the CNS, and the most widely distributed receptor 
subtype is NK-1. Substance P binds to NK-1 receptors that are 
located in high density in the hypothalamus, periaqueductal gray 
matter, amygdala, locus ceruleus, and parabrachial nucleus75. 
Substance P-containing neurons contain 5HT and share projection 
targets with NE neurons76,77. A behavioral and physiologic stress 
response in animals has been associated with increases in substance 
P78,79 and attenuated by the administration of an NK-1 
antagonist80,81. After exposure to a stressful stimulus, patients with 
MDD or PTSD exhibit elevated CSF substance P concentrations82; 
decreased serum levels have been associated with an antidepressant 
response83. Preclinical studies show that various NK-1 receptor 
antagonists possess antidepressant-like effects and several have been 
tested in humans. Aprepitant (MK-869) showed antidepressant 
efficacy in an initial placebo-controlled trial84, but subsequent 
controlled studies failed to confirm this finding80. L-759274 and CP-
122721 demonstrated antidepressant effects in pilot studies85,86, 
though replication has not been reported for either. GR-205171 has 
shown preliminary efficacy in social phobia87 and antidepressant-
like effects in an animal model88. 
MCH1 Receptor Antagonists 
Melanin concentrating hormone is a lateral hypothalamic 
neuropeptide with a well-established role in the regulation of food 
intake and energy balance89. More recently, blockade of this target 
has been linked to antidepressant and anxiolytic properties in animal 
models90, through enhancement of glutamaergic transmission in the 
shell of the nucleus accumbens (NuAcc)91. The NuAcc is central to 
the modulation of goal directed behaviors for natural rewards92–94. 
MCH seems to play an important role in the modulation of 
hypothalamic–NuAcc interactions, and therefore MCH1 antagonists 
may be able to modulate hedonic drive95– 97. In fact, making a 
parallel with paradoxical effects of CRF in the NuAcc on cue-
triggered motivation for sucrose intake98, one could speculate that 
MCH1 antagonists may actually stimulate palatable food intake as 
part of an enhancement of hedonic drive. In addition, MCH1 
antagonists induce hippocampal neurogenesis after 4 weeks chronic 
treatment in the mouse, a process that has been associated with 
chronic antidepressant and chronic anxiolytic activity99. Finally, the 
MCH system is one of the many peptidergic pathways known to 
modulate the HPA axis100. Anhedonia, with loss of taste and 
appetite, and HPA axis overactivity are key features of melancholic 
depression. It is hypothesized that such patients may be a relevant 
target population for MCH1 antagonists. As this is a relatively new 
area, several outstanding questions remain: How does the MCH 

system interact with classical neurotransmitters in relevant disease 
state models? What is the impact of MCH2, a second MCH receptor 
in humans101 (rodents have only one)? Is there any evidence that 
MCH1 plays a critical role in non-human primates? Even in the 
absence of answers to these questions, many companies are working 
on this target with at least one in phase I trials (for obesity as the 
primary indication). Progress toward the clinic has been slowed by 
difficulty in optimization of compounds with adequate 
cardiovascular safety as well as other ‘drugability’ issues102. 
Gal3 Receptor Antagonists 
The neuropeptide galanin is widely distributed in the mammalian 
CNS and modulates multiple feeding, cognitive and affective 
behaviors. Pathological hyperactivity in the LC results in galanin 
release inhibiting dopaminergic pathways to the forebrain, resulting 
in reduced locomotor activity and anhedonia103. However, the co-
storage and co-release of galanin and norepinephrine described in 
rodents CNS, is not seen in human LC104, and the anatomical 
distribution of galanin in the brain differs significantly between 
rodents and higher primates105. Galanin is also known to be an 
inhibitory modulator of both acetylcholine and serotonin release in 
the rat hippocampus106, arguing in favor of the potential usefulness 
of galanin antagonists for the treatment of depression. In rats, ECT 
increases galanin mRNA in the dorsal raphe nucleus and sleep 
deprivation augments galanin mRNA in the locus coeruleus107 and in 
depressed patients, intravenous administration of galanin is followed 
by rapid and acute antidepressant like effects108. 
Arginine vasopressin 
Arginine vasopressin (AVP) is a cyclic nonapeptide synthesized 
exclusively by neurosecretory cells of the CNS with a diverse array 
of biological functions based on differences in sites of release. AVP 
released into the portal circulation from the median eminence is also 
known to directly modulate CRF effects on ACTH release and the 
HPA axis. The central vasopressinergic system has been examined 
as a platform for psychiatric drug development, including 
depression109. The central vasopressinergic system acts on several 
key neural substrates underlying aspects of the depression 
endophenotype, including monaminergic systems and those 
regulating memory, pain sensitivity, synchronization of biological 
rhythms, the timing/quality of R.E.M. sleep, and regulation of fluid 
and electrolyte homeostasis110. Disturbances (hyperactivity) in 
vasopressinergic activity have also been reported clinically in 
patients with depression111,112. Together, this has led many to 
hypothesize the utility of central vasopressinergic receptor 
antagonism as a potentially novel antidepressant strategy. 
CONCLUSION 
Despite the efficacy of our currently available antidepressant 
medications and somatic therapies, residual depressive symptoms 
and relapse are common. This creates a challenge for the clinician as 
s/he seeks to completely eliminate symptoms and help patients fully 
recover. To reach these goals, improved treatment strategies are 
needed. Understanding the neurobiology of depression has helped 
researchers uncover a number of novel targets for antidepressant 
therapies. Over the next decade, proof-of-concept studies will be 
performed in the clinic for a wide array of mechanisms and the true 
validity of these novel strategies will be enlightening. This will not 
only include combination molecules taking further advantage of 
monoaminergic approaches but novel mechanisms yet to be tested in 
humans. Clearly, the current array of animal models for determining 
antidepressant activity has been useful in predicting therapeutic 
efficacy of multiple monoaminergic mechanisms. Notably, 
mechanisms that do not directly or indirectly modulate 
monoaminergic mechanisms remain to be fully validated and the 
development of further animal models may be necessary. In 
conclusion, the most successful novel approaches will be those that 
not only demonstrate preclinical antidepressant- like effects, but 
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those that target the unmet clinical needs and lead to long-term 
disease modification. For many of the approaches described in this 
review, clinical testing will determine the extent to which these 
approaches show distinct advantages over existing therapies and 
finally demonstrate the true innovation associated with these novel 
mechanisms. 
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