INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 - 8407 Research Article # FORMULATION AND EVALUATION OF THEOPHYLLINE CONTROLLED RELEASE MATRIX TABLETS USING HPMC AS POLYMER N.R Sivakumar¹*, S Chandra¹, T Pradeep Kumar¹, S.K Kanthlal², R.S Jayaseelan² ¹Department of pharmaceutics, JKKMMRF College of Pharmacy, B.komarapalayam-638183, Namakkal Dt, Tamilnadu India ²Department of Pharmacology, JKKMMRF College of Pharmacy, B.komarapalayam-638183, Namakkal Dt, Tamilnadu India Article Received on: 10/04/12 Revised on: 23/05/12 Approved for publication: 09/06/12 *Email: nrsivapharm@gmail.com # ABSTRACT Theophylline controlled release matrix tablets were prepared with HPMC K_{100}^{M} in two ratios and with three different hardness of 5, 6 and 7kg/cm². Theophylline controlled release granules were prepared and evaluated for the angle of repose, bulk density, tapped density, compressibility index and hausners ratio. All the formulation showed good flow properties. The compressed tablets were evaluated for the hardness, uniformity of weight, friability, drug content and invitro dissolution studies. All the formulations showed compliance with pharmacopoeial standards. There was no interaction between drug, polymer and other excipients. It was confirmed by FTIR studies. Among all the formulations F6 (i.e. polymer ratio1:2 and hardness $7kg/cm^2$) showed prolong release when compare to other formulations. The drug release kinetics showed zero order. The optimum formulation (F6) was stable when it was stored at $4^0 \pm 2^0$ C, $27^0 \pm 2^0$ C and at $45^0 + 2^0$ C for 6 months. KEYWORDS: Theophylline, HPMC, Controlrelease, invitro drug release #### INTRODUCTION Controlled release products are designed to maintain constant therapeutic plasma concentration of the drug within the therapeutic range of the drug over prolonged periods¹. Matrix is defined as a well-mixed composite of one or more drugs with gelling agent i.e. hydrophilic polymers². Matrix technologies have often proven popular among the oral controlled drug delivery technologies because of their simplicity, ease in manufacturing, high level reproducibility, stability of the raw materials and dosage form and ease of scale-up and process validation³. Theophylline is a methylxanthine derivative and it is very effective in the chronic treatment of bronchial asthma and bronchospastic reaction. Its therapeutic concentration range is narrow from 10 to 20 g/ml while toxicity usually appears at concentration above 20 _g/ml⁴. Since theophylline having narrow therapeutic index it can be used as a controlled release product so as to protect asthma patients from frequent attacks and to prevent from toxic side effects⁵. The main aim of the study was to formulate therapeutic controlled release tablets using HPMC K_{100}^{M} in two different ratios (1:1 and 1:2) and also varying the hardness of the tablets (5, 6 and 7 kg/cm² respectively). ## **Materials and Methods** ## Preparation of controlled release matrix tablet Matrix tablets were prepared by wet granulation technique. Theophylline controlled release tablets were prepared with HPMC $K_{100}^{\ M}$ and other additives that are listed in the table-1. Theophylline, HPMC $K_{100}^{\ M}$ and lactose were mixed together. Isopropyl alcohol in which PVP K-30 was previously dissolved was added to the above powder mixture and mixed well to form a coherent mass. Then the coherent mass was passed through sieve no-16 and the granules were dried at $40^{\circ} + 2^{\circ}$ C for 2 hours. Dried granules were passed through sieve no-20. After the granules were evaluated, magnesium stearate was added to the granules. Then the lubricated granules were compressed into tablets weighing 500mg using 12mm round flat faced punches in a rotary tablet press (Rimek mini press-1, Model RSB-4, Karnavathi Engineering, Ahmedabad) to a hardness of 5, 6 and 7 kg/cm². The compressed tablets were dedusted and evaluated for various tablet properties. ## **Evaluation of granules** The granules were evaluated for angle of repose^{6,7}, bulk density⁸, tapped density⁸, compressibility index and hausner ratio⁹ for micromeritic properties. ## **Evaluation of tablets** To design tablets and tablet production quality test, the formulated tablets were evaluated for thickness and diameter (using a vernier caliper), hardness test (using Monsanto hardness tester)¹⁰ and friability (using Roche friabilator)¹¹. For weight variation test¹², 20 tablets of each formulation were selected at random and weighed individually. The individual weights were compared with average weight for determination of weight variation. The results were expressed in table-3. For content uniformity test¹³, ten tablets were powdered in a mortar. The powder equivalent to 100mg of theophylline was weighed and transferred to 100ml volumetric flask. It was dissolved in pH 7.4. From this appropriate dilution were made and the absorbance was analyzed at 277nm using UV double beam spectrophotometer. #### FT-IR studies It was used to study the interactions between the drug and polymer. The drug and polymer must be compatible with one another to produce a stable product. Drug and polymer interactions were studied by using FTIR (Shimadzu, Japan model – 8400S) as per the method described by Pathra et.al 14 . IR spectral analysis of pure theophylline, HPMC $K_{100}{}^{\rm M}$ and theophylline with HPMC $K_{100}{}^{\rm M}$ (1:2) were carried out. The peak and patterns produced by the pure drug were compared with combination of pure drug and polymer. #### In-vitro release studies In-vitro drug release study was carried out using disso 2000 apparatus (basket type). Dissolution medium 900 ml of pH 7.4 was placed into the dissolution flask maintaining the temperature at $37^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$ and rpm of 50 for 10hrs. Samples measuring 10ml were withdrawn every 30min intervals, replace same quantity of fresh dissolution medium. Collected samples were suitably diluted with pH 7.4 and analyzed at 277 nm using pH 7.4 as blank in UV-double beam spectrophotometer. ## Drug release kinetics To analyze the mechanism of drug release rate kinetics, the results of invitro release profile were plotted in various kinetic models like zero order, first order, higuchi model and korsmeyer – peppas¹⁵. ## Stability studies The optimised formulation F6 was taken for the stability study. The tablets were packed in amber- colored bottle and kept at $4^0 \pm 2^0$ C, $27^0 \pm 2^0$ C (RH $60 \pm 5\%$) and $45^0 \pm 2^0$ C (RH $75 \pm 5\%$) for a period of 6 months. The tablets were observed physically for any colour change. Tablets were taken at 2, 4 and 6^{th} months intervals and evaluated for drug content and *invitro* release study². ## RESULTS AND DISCUSSION ## **Precompression studies** The granules of all the formulations were evaluated for angle of repose, bulk density, tapped density, and compressibility index and hausner ratio. The angle of repose was found to be $31^{\circ}02^{\circ} \pm 0.66 - 32^{\circ}55^{\circ} \pm 0.69$. It indicates that granules have a good flow property. The bulk density and tapped density was found to be in the range of $0.3538 \pm 0.00 - 0.3947 \pm 0.01$ gm/cc and $0.3990 \pm 0.01 - 0.4439 \pm 0.01$ gm/cc respectively. The compressibility and hausner ratio was found to be 9.89 ± 1.66 to 14.21 ± 1.27 and 1.11 ± 0.02 to 1.17 ± 0.02 indicating good flow character of the granules (table-2). All the results are within the prescribed limits¹⁰. #### **Evaluation of tablets** The hardness of the tablets for all the formulations was in the range of 5-7 kg/cm². The uniformity weight of 20 tablets of all the formulations was within 5% deviation. The friability of all the formulation was less than 1%. Drug content of all the formulations were found to be in the range of 96 to 99 % (table-3). All the results are within the prescribed limits 10. #### FT-IR Studies The FT-IR studies showed that N-H stretching, C-H stretching, C-O stretching, C-H bending, O-H deformation, C-H out of plane bending of pure theophylline and theophylline with HPMC K100M (1:2 ratio) were almost in the same region of wave number ranging from 3529 cm-1 to 609.53 cm-1. It showed that there was no significant interaction between the drug and polymer and they are compatible with each other. ## **Invitro Drug Release** The results of the invitro release study for all the formulations are shown in figure-1. At the end of 10th hours the cumulative percentage drug release for the formulations F1-F6 was found to be 97.2 ± 0.77 ; 88.2 ± 0.96 ; 85.5 ± 1.25 ; 82.8 + 0.49; 79.2 + 0.77 and 75.6 + 1.66 respectively. Among the six formulations, F6 showed prolonged drug release. An increase in the compression force increases the hardness and the apparent density of the tablet, thereby reducing the matrix porosity in the tablet. The release rate decreases with increase in compression force¹⁶. The drug release was found to be faster at lower compression force than at higher ones because of the relatively larger matrix porosity of the tablet, which allowed greater penetration of dissolution fluid into the matrix, thus enhancing polymer disentanglement and drug dissolution¹⁷. The controlled drug release may also be due to increased proportion of polymer¹⁸ #### Kinetic study The release rate kinetic data for all formulations is shown in table-4. When the data were plotted according to zero order, the formulations showed a high linearity with regression coefficient values (R^2) between 0.9748 – 0.9895. It showed that the drug release follows zero order¹⁹. Diffusion is related to transport of drug from the matrix tablets into the dissolution medium depends upon the concentration. This is explained by Higuchi's equation. When the data were plotted according to Higuchi's equations, the regression co-efficient values (R²) were between 0.9630 – 0.9879.By using korsmeyer model, the mechanism of drug release was determined. If n = < 0.45, it is fickian diffusion and if n = 0.45 - 0.89, it is non-fickian diffusion transport¹⁹. The results of all the formulations showed that the n values are between 0.6739 - 0.6901. It proved that all formulations followed non-fickian transport mechanism¹⁹ both diffusion and erosion²⁰. #### Stability studies Stability study for the optimized formulation F-6 showed that there was no significant colour change in all the tablets after 6 months. Drug content was estimated and invitro drug release was carried out after 2, 4 and 6 months. The percentage of drug content was between 96.8 to 98.8% upto 6 months (table-5) in all the three temperatures. Dissolution studies showed that there was no much deviation in the percentage of drug release. It showed that F-6 formulation was stable at different temperatures upto 6 months. #### CONCLUSION Results of the present study confirmed that the polymer ratio and hardness plays a major role in drug release. As the polymer ratio and hardness of the tablets increased the drug release was prolonged. #### REFERENCES - Pandit JK, Singh S and Muthu MS. Controlled release formulation in neurology practice. Annual of Ind Acadamy of Neurolgy Dec – 2006; 207 – 216. - Yeole PG, Galgatte, Babla IB and Nkhat D. Design and evaluation of xanthan gum – based sustained release matrix tablets of diclofenac sodium. Ind J Pharm Sci 2006; 68: 185-189. - Manthena VS Varma, Aditya M. Kaushal, Alka Garg and Sanjay Garg. Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. Am J Drug Deliv 2004; 2:43-57. - Evelyn Ojoe, Edna Mitie Miyauchi, Telma Mary Kaneko, Maria Valéria Rolbes Velasco and Vladi Olga Consiglieri. Influence of cellulose polymers type on in vitro controlled release tablets containing theophylline. Brazilian J Pharm Sci 2007; 43: 571-579. - Prafulla Kumar Nandi. Invitro evaluation of theophylline SR tablets. The Eastern Pharmacist oct-1997; 149-150. - Carr RL. Evaluating flow properties of solids. Chem Eng 1965; 72: 163 – 168. - Cooper J and Gunn C. Powder flow and compaction. In: Carter S.J., Tutorial Pharmacy, CBS publishers, New Delhi, 1986; 211 – 233. - Shah D, Shah Y and Rampradhan M. Development and evaluation of controlled release diltiazem hydrochloride microparticles using cross – linked polyvinyl alcohol. Drug Dev Ind Pharm 1977; 23: 567 – 574. - United States of Pharmacopeia-National Formulary. USP 30 NF 25. The Unit States Pharmacopeial Convention, Rockville, MD, 2007, Vol. 1, 226. - Rippe E. Compression of solid and compressed dosage forms. In: Encyclopedia of pharmaceutical technology, Swarhrick, J.Marcel Dekker. Inc., New York, 1990; 149-166. - Pharmacopoeia of India. Ministry of health and family welfare. Govt. of India, Controller of publications, New Delhi, 1996; vol.II., 736; A-80-83, 147 and 169. - Leon Lachman, Herhert A, Liberman and Joseph L Karnig. The theory and practice of industrial pharmacy. 3rd ed. Lea and Febigen, Philadelphia, 1986; 430-456. - Pharmacopoeia of India. Ministry of health and family welfare. Govt. of India, Controller of publications, New Delhi, 2007; vol.II, 1795. - Pathra CH.N, Bhanoji Rao MK, Yadav KS and Prakash K. Influence of some cellulose ethers on the release of propranolol hydrochloride from HPMC K100M matrix tablets. Ind J Pharm Sci 2004; 66: 636 – 641. - Hamid A. Merchant, Harris M. Shoaib, Jaweria Tazeen and Rabia I. Yousuf. Once-daily tablet formulation and in vitro release evaluation of cefpodoxime using hydroxy propyl methylcellulose: A technical note. AAPS PharmSciTech 2006; 7: E1 – E6. - Punna Rao Ravi, Sindhura Ganga and Ranendra Narayan Saha. Design and study of lamivudine oral controlled release tablets. AAPS PharmSciTech 2007; 8: 101; E1 – E9. - 17. Pandey VP, Manavalan R, Sundar Rajan T and Ganesh KS. Formulation and release characteristics of sustained release diltiazem hydrochloride tablet. Ind J Pharm Sci 2003; 65: 44 48. - Sundaramoorthy K, Kavimani S, Vetrichelvam T, Manna PK and Venkappayya D. Formulation and evaluation of extended release dosage form of metformin hydrochloride using combined hydrophobic and hydrophilic matrix tablets. Ind J Pharm Edu Res 2008; 42: 232-242. - Schwarz BJ, Simonelli AP and Higuchi WI. Drug release from wax matrix analysis of data of order of kinetic release and diffusion controlled model. J Pharm Sci 1998; 57: 274-277. - Korsmeyer RW, Gurny R, Doelker E, Buri P and Peppas NA. Mechanisms of solute release from porus hydrophilic polymers. Int J Pharm 1983; 15: 25-35. - Kim H and Fassihi R. Application of binary polymer system in drug release rate modulation II. Influence of formulation variables and hydrodynamic conditions on release kinetics. J Pharm Sci 1997; 86: 323-328. Table:1 composition of theophylline CR matrix tablets(mg/tablet) | Ingredients (mg) | Theophylline:HPMC(1:1) | Theophylline:HPMC(1:2) | |-----------------------------------|------------------------|------------------------| | Theophylline | 100 | 100 | | HPMC K100M | 100 | 200 | | Lactose monohydrate | 296 | 196 | | Polyvinyl pyrolidone k30(PVP K30) | 2 | 2 | | Magnesium Stearate | 2 | 2 | | Iso propyl alcohol(IPA) | q.s | q.s | (1:1) and (1:2) are drug :polymer ratio Table:2 Evaluation of theophyline matrix granules | | Theophylline : HPMC K100M | | | | | | | |---------------------------|---------------------------|-------------|----------------------|--------------|---------------------|--------------|--| | Parameters | 5 kg/cm ² | | 6 kg/cm ² | | 7kg/cm ² | | | | 1 at affecters | 1:1 | 1:2 | 1:1 | 1:2 | 1:1 | 1:2 | | | | (F-1) | (F-2) | (F-3) | (F-4) | (F-5) | (F-6) | | | Angle of repose (Θ) | 31°02± | 32°51± | 31°61± | 32°55± | 32°55± | 32°14± | | | | 0.66 | 0.74 | 0.67 | 0.62 | 0.69 | 0.77 | | | Bulk density(gm/cc) | 0.3886±0.01 | 0.3714±0.01 | 0.3808±0.01 | 0.3538 ±0.00 | 0.3642 ±0.01 | 0.3947 ±0.01 | | | Tapped density (gm/cc) | 0.4336±0.01 | 0.4122±0.01 | 0.4439±0.01 | 0.3990 ±0.01 | 0.4146 ±0.01 | 0.4412 ±0.01 | | | Compressibility index (%) | 10.366±1.74 | 9.89 ±1.66 | 14.21 ±1.27 | 11.31 ±1.86 | 12.1 1±2.85 | 13.04 ±3.54 | | | Hausner ratio | 1.12±0.04 | 1.11±0.02 | 1.17±0.02 | 1.13±0.02 | 1.14±0.04 | 1.15±0.04 | | All values are expressed as mean ±SD,n=5 Table 3.Evalution of the phylline controlled release matrix tablets | parameters | Theophylline: HPMC K100M | | | | | | |-----------------------|--------------------------|--------|---------------------|--------|---------------------|--------| | | 5Kg/Cm ² | | 6Kg/Cm ² | | 7Kg/Cm ² | | | | 1:1 | 1:2 | 1:1 | 1:2 | 1:1 | 1:2 | | | (F-1) | (F-2) | (F-3) | (F-4) | (F-5) | (F-6) | | Hardness | 5.01± | 5.03± | 5.97± | 6.02± | 7.03± | 7.01± | | (kg/cm ²) | 0.23 | 0.18 | 0.12 | 0.16 | 0.34 | 0.25 | | Uniformity of weight | 499.9± | 501.6± | 500.2± | 498.4± | 498.7± | 500.2± | | (mg) | 6.2 | 5.5 | 3.9 | 4.4 | 3.7 | 7.2 | | Friability(%) | 0.25± | 0.23± | 0.30± | 0.28± | 0.15± | 0.19± | | | 0.05 | 0.07 | 0.09 | 0.04 | 0.07 | 0.06 | | Drug content(%) | 98.8± | 97.4± | 97.6± | 97.4± | 96.6± | 98.8± | | | 0.20 | 0.40 | 0.35 | 0.24 | 0.28 | 0.38 | | Thickness(mm) | 4.2± | 4.2± | 4.1± | 4.2± | 4.1± | 4.1± | | | 0.01 | 0.03 | 0.04 | 0.00 | 0.03 | 0.02 | | | 12.6± | 12.5± | 12.5± | 12.6± | 12.6± | 12.6± | | Diameter(mm) | 0.00 | 0.02 | 0.03 | 0.01 | 0.04 | 0.03 | | | | | | | | | Table 4. Drug release kinetics of theophylline controlled release matrix tablet formulations | | | Correlation Co-e | Korsmeyers-peppas | | | | |------------------|------------|------------------|-------------------|---------------|----------|-------------------------------| | Formulation code | Zero order | First order | Higuchi | Hixon crowell | Slope(n) | Correlation Co- efficient(r²) | | F-1 | 0.9854 | 0.8523 | 0.9683 | 0.9423 | 0.6846 | 0.9901 | | F-2 | 0.9846 | 0.9552 | 0.9789 | 0.9853 | 0.6816 | 0.9958 | | F-3 | 0.9748 | 0.9760 | 0.9879 | 0.9919 | 0.6739 | 0.9938 | | F-4 | 0.9889 | 0.9693 | 0.9739 | 0.9892 | 0.6802 | 0.9984 | | F-5 | 0.9831 | 0.9851 | 0.9808 | 0.9952 | 0.6784 | 0.9985 | | F-6 | 0.9895 | 0.9698 | 0.9630 | 0.9855 | 0.6901 | 0.9910 | Table 5.Stability study for the optimized formulation F-6 drug content estimation | Time in months | Percentage drug content | | | | | |----------------|-------------------------|-----------|-----------|--|--| | | 4°±2°c | 27°±2°c | 45°±2°c | | | | 0 day | 98.8±0.38 | 98.8±0.38 | 98.8±0.38 | | | | 2 | 98.8±0.60 | 98.8±0.83 | 97.6±0.41 | | | | 4 | 97.6±0.33 | 97.6±0.76 | 97.4±0.29 | | | | 6 | 97.4±0.51 | 97.0±0.93 | 96.8±0.22 | | | Figure 1. Comparison of invitro drug release study of the ophylline controlled release formulations F-1 to F-6 Source of support: Nil, Conflict of interest: None Declared