EVALUATION OF EFFLUX PUMP ACTIVITY AND BIOFILM FORMATION IN MULTIDRUG RESISTANT KLEBSIELLA PNEUMONIAE ISOLATES IN TANTA, EGYPT

Authors

  • Tarek El-Said El-Banna
  • Fatma Ibrahim Sonbol
  • Heba M. El-Dawy

Keywords:

Klebsiella pneumoniae, Efflux, Biofilm, Antibiotic resistance

Abstract

Nosocomial and community acquired infections that caused by multidrug-resistant (MDR) Klebsiella pneumoniae isolates are widespread recently resulting in high morbidity and mortality due to limited number of treatment options with effective antibiotics. The aim of this study is to evaluate the antibiotic resistance profile, biofilm formation and efflux pump activity of MDR K. pneumoniae isolates collected from different hospitals in Tanta, Egypt. A total of 70 K. pneumoniae isolates characterized by standard biochemical tests and confirmed by MALDI-TOF/MS were screened for antibiotic susceptibility, efflux pump activity and biofilm formation. Isolates displayed high resistance to penicillins, cephalosporins, trimethoprim- sulfamethoxazole and the majority of tested fluoro/-quinolones and decreased resistance to imipenem, amikacin, chloramphenicol, tigecycline and colistin. Out of 70 K. pneumoniae isolates, 2 isolates exhibited Pan Drug-Resistance (PDR) profile while 57 (81.4%) and 11 (15.7%) exhibited MDR and Extensively drug-resistance (XDR) profiles, respectively. Sixty-four (91.4%) isolates exhibited efflux pump activity while all tested isolates had the ability to form biofilm with varied degrees as 40 (57.1%), 26 (37.1%), and 4 (5.7%) isolates were strong, moderate and weak biofilm producers, respectively. Also, a strong relation between efflux pump activity and biofilm formation per isolate was detected. In conclusion, Multidrug resistance, biofilm formation and efflux pump capabilities in K. pneumoniae have serious public health implications in the management and control of infections caused by this bacterium. Therefore, a multifaceted approach and precise planning are recommended in controlling these infections.

Downloads

Published

23-03-2024